1
|
Zabalgogeazcoa I, Arellano JB, Mellado-Ortega E, Barro F, Martínez-Castilla A, González-Blanco V, Vázquez de Aldana BR. Symbiotic fungi from a wild grass ( Celtica gigantea) increase the growth, grain yield and quality of tritordeum under field conditions. AOB PLANTS 2024; 16:plae013. [PMID: 38601215 PMCID: PMC11005784 DOI: 10.1093/aobpla/plae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Plants function in symbiosis with numerous microorganisms, which might contribute to their adaptation and performance. In this study, we tested whether fungal strains in symbiotic interaction with roots of Celtica gigantea, a wild grass adapted to nutrient-poor soils in semiarid habitats, could improve the field performance of the agricultural cereal tritordeum (Triticum durum × Hordeum chilense). Seedlings of tritordeum were inoculated with 12 different fungal strains isolated from roots of Celtica gigantea that were first proved to promote the growth of tritordeum plants under greenhouse conditions. The inoculated seedlings were transplanted to field plots at two locations belonging to different climatic zones in terms of mean temperatures and precipitation in the Iberian Peninsula. Only one strain, Diaporthe iberica T6, had a significant effect on plant height, number of tillers and grain yield in one location. This result showed a substantial divergence between the results of greenhouse and field tests. In terms of grain nutritional quality, several parameters were differentially affected at both locations: Diaporthe T6, Pleosporales T7, Zygomycota T29 and Zygomycota T80 increased the content of total carotenoids, mainly lutein, in the colder location; whereas gluten proteins increased with several treatments in the warmer location. In conclusion, early inoculation of tritordeum plants with fungal symbionts had substantial beneficial effects on subsequent plant growth and development in the field. Regarding grain nutritional quality, the effect of inoculation was affected by the agroclimatic differences between both field locations.
Collapse
Affiliation(s)
- Iñigo Zabalgogeazcoa
- Unit of Plant-Microorganism Interactions, Institute of Natural Resources and Agrobiology of Salamanca, Spanish National Research Council (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Juan B Arellano
- Unit of Plant-Microorganism Interactions, Institute of Natural Resources and Agrobiology of Salamanca, Spanish National Research Council (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Elena Mellado-Ortega
- Unit of Plant-Microorganism Interactions, Institute of Natural Resources and Agrobiology of Salamanca, Spanish National Research Council (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
- Department of Biology, Duke University, 130 Science Dr, Durham, NC 27710, USA
| | - Francisco Barro
- Department of Plant Biotechnology, Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), Avenida Menéndez Pidal s/n, Campus Alameda del Obispo, 14004 Córdoba, Spain
| | - Ana Martínez-Castilla
- Department of Plant Biotechnology, Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), Avenida Menéndez Pidal s/n, Campus Alameda del Obispo, 14004 Córdoba, Spain
| | - Virginia González-Blanco
- Unit of Plant-Microorganism Interactions, Institute of Natural Resources and Agrobiology of Salamanca, Spanish National Research Council (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Beatriz R Vázquez de Aldana
- Unit of Plant-Microorganism Interactions, Institute of Natural Resources and Agrobiology of Salamanca, Spanish National Research Council (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| |
Collapse
|
2
|
Guzmán-López MH, Ruipérez V, Marín-Sanz M, Ojeda-Fernández I, Ojeda-Fernández P, Garrote-Adrados JA, Arranz-Sanz E, Barro F. Identification of RNAi hypoallergic bread wheat lines for wheat-dependent exercise-induced anaphylaxis patients. Front Nutr 2024; 10:1319888. [PMID: 38292700 PMCID: PMC10824911 DOI: 10.3389/fnut.2023.1319888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Wheat-dependent exercise-induced anaphylaxis (WDEIA) is one of the most severe forms of wheat allergy. It occurs in patients when they exercise after ingesting wheat-containing foods. Nowadays, the only possible alternative for WDEIA patients is to avoid such foods. This study investigated the potential of six RNA of interference (RNAi) wheat lines with low-prolamin content as alternatives for WDEIA patients. For that purpose, a high performance-liquid chromatography (HPLC) analysis was performed to evaluate differences in gluten protein fractions among these lines. Next, western blots were conducted to measure the immunoglobulin E (IgE) reactivity to wheat proteins in sera from five WDEIA patients. Additionally, monoclonal antibodies (moAb) recognition sites and the IgE binding sites were searched in all peptides identified by LC-MS/MS after protein digestion. The results showed a 61.4%-81.2% reduction in the gliadin content of the RNAi lines, accompanied by an increase in their high-molecular weight (HMW) glutenin content compared to the wild type bread wheat line (WT). In all cases, the reduction in gliadin content correlated with a decrease in IgE reactivity observed in the sera of WDEIA patients, highlighting the E82 and H320 lines. These two RNAi lines exhibited a ≤90% reduction in IgE reactivity. This reduction could be attributed to an absence of IgE binding sites associated with α- and ω5-gliadins, which were present in the WT. Overall, these lines offer a potential alternative for foodstuff for individuals with WDEIA.
Collapse
Affiliation(s)
- María H. Guzmán-López
- Functional Genomics Laboratory, Plant Breeding Department, Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), Córdoba, Spain
| | - Violeta Ruipérez
- College of Agricultural Engineering, University of Valladolid, Palencia, Spain
| | - Miriam Marín-Sanz
- Functional Genomics Laboratory, Plant Breeding Department, Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), Córdoba, Spain
| | | | | | - José Antonio Garrote-Adrados
- Excellence Unit, Institute of Biology and Molecular Genetics, University of Valladolid—Spanish National Research Council (CSIC), Valladolid, Spain
| | - Eduardo Arranz-Sanz
- Excellence Unit, Institute of Biology and Molecular Genetics, University of Valladolid—Spanish National Research Council (CSIC), Valladolid, Spain
| | - Francisco Barro
- Functional Genomics Laboratory, Plant Breeding Department, Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), Córdoba, Spain
| |
Collapse
|
3
|
Sghayar S, Debez A, Lucchini G, Abruzzese A, Zorrig W, Negrini N, Morgutti S, Abdelly C, Sacchi GA, Pecchioni N, Vaccino P. Seed priming mitigates high salinity impact on germination of bread wheat ( Triticum aestivum L.) by improving carbohydrate and protein mobilization. PLANT DIRECT 2023; 7:e497. [PMID: 37284466 PMCID: PMC10239762 DOI: 10.1002/pld3.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/22/2022] [Accepted: 04/25/2023] [Indexed: 06/08/2023]
Abstract
Salinity is increasingly considered as a major environmental issue, which threatens agricultural production by decreasing yield traits of crops. Seed priming is a useful and cost-effective technique to alleviate the negative effects of salinity and to enable a fast and uniform germination. In this context, we quantified the effects of priming with gibberellic acid (GP), calcium chloride (CP), and mannitol (MP) on seed germination of three bread wheat cultivars and investigated their response when grown at high salinity conditions (200 mM NaCl). Salt exposure strongly repressed seed imbibition and germination potential and extended germination time, whereas priming enhanced uniformity and seed vigor. Seed preconditioning alleviated the germination disruption caused by salt stress to varying degrees. Priming mitigating effect was agent-dependent with regard to water status (CP and MP), ionic imbalance (CP), and seed reserve mobilization (GP). Na+ accumulation in seedling tissues significantly impaired carbohydrate and protein mobilization by inhibiting amylase and proteases activities but had lesser effects on primed seeds. CP attenuated ionic imbalance by limiting sodium accumulation. Gibberellic acid was the most effective priming treatment for promoting the germination of wheat seeds under salt stress. Moreover, genotypic differences in wheat response to salinity stress were observed between varieties used in this study. Ardito, the oldest variety, seems to tolerate better salinity in priming-free conditions; Aubusson resulted the most salt-sensitive cultivar but showed a high germination recovery under priming conditions; Bologna showed an intermediate behavior.
Collapse
Affiliation(s)
- Souhir Sghayar
- CREA‐CI, Consiglio per la Ricerca in Agricoltura e l'Analisi dell' Economia Agraria, Centro di Ricerca Cerealicoltura e Colture IndustrialiVercelliItaly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj‐CédriaHammam‐lifTunisia
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
| | - Ahmed Debez
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj‐CédriaHammam‐lifTunisia
| | - Giorgio Lucchini
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
| | - Alessandro Abruzzese
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
| | - Walid Zorrig
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj‐CédriaHammam‐lifTunisia
| | - Noemi Negrini
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
| | - Silvia Morgutti
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj‐CédriaHammam‐lifTunisia
| | - Gian Attilio Sacchi
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
| | - Nicola Pecchioni
- CREA‐CI, Consiglio per la Ricerca in Agricoltura e l'Analisi dell' Economia Agraria, Centro di Ricerca Cerealicoltura e Colture IndustrialiVercelliItaly
| | - Patrizia Vaccino
- CREA‐CI, Consiglio per la Ricerca in Agricoltura e l'Analisi dell' Economia Agraria, Centro di Ricerca Cerealicoltura e Colture IndustrialiVercelliItaly
| |
Collapse
|
4
|
Physiological and Antioxidant Response to Different Water Deficit Regimes of Flag Leaves and Ears of Wheat Grown under Combined Elevated CO2 and High Temperature. PLANTS 2022; 11:plants11182384. [PMID: 36145784 PMCID: PMC9504337 DOI: 10.3390/plants11182384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
Abstract
Triticum aestivum L. cv. Gazul is a spring wheat widely cultivated in Castilla y León (Spain). Potted plants were grown in a scenario emulating the climate change environmental conditions expected by the end of this century, i.e., with elevated CO2 and high temperature under two water deficit regimes: long (LWD) and terminal (TWD). Changes in biomass and morphology, the content of proline (Pro), ascorbate (AsA) and glutathione (GSH), and enzymatic antioxidant activities were analyzed in flag leaves and ears. Additionally, leaf gas exchange was measured. LWD caused a decrease in biomass and AsA content but an increase in Pro content and catalase and GSH reductase activities in flag leaves, whereas TWD produced no significant changes. Photosynthesis was enhanced under both water deficit regimes. Increase in superoxide dismutase activity and Pro content was only observed in ears under TWD. The lack of a more acute effect of LWD and TWD on both organs was attributed to the ROS relieving effect of elevated CO2. Gazul acted as a drought tolerant variety with anisohydric behavior. A multifactorial analysis showed better adaptation of ears to water deficit than flag leaves, underlining the importance of this finding for breeding programs to improve grain yield under future climate change.
Collapse
|
5
|
Dvořáček V, Kotrbová-Kozak A, Kozová-Doležalová J, Jágr M, Hlásná Čepková P, Vítámvás P, Kosová K. Specific Avenin Cross-Reactivity with G12 Antibody in a Wide Range of Current Oat Cultivars. Foods 2022; 11:foods11040567. [PMID: 35206043 PMCID: PMC8871486 DOI: 10.3390/foods11040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Current clinical studies confirm that the consumption of oats for people suffering from celiac disease is safe. Some studies have confirmed different levels of immunoreactive gluten epitopes of oats in different cultivars, while others explain these differences due to contamination with gluten-rich species or as random cross-reactivity ELISA of homologous oat epitopes with anti-wheat gliadin antibodies. The aim of our two-year study was therefore to map cross-reactive oat epitopes in a set of 132 oat cultivars using a G12-based ELISA kit. The results were focused on the varietal and annual level of cross-reactivity (interference) of avenin epitopes with the G12 antibody on the identification of potential cultivars with significantly different interferences and assessing the degree of risk of possible false-contamination with external gluten. Although repeated evaluations confirmed high year-to-year variability (RSD ≥ 30%) in approximately 2/3 of the cultivars, the content of interfering avenin epitopes with G12 did not exceed the considered safe limit (20 mg·kg−1) for celiacs. At the same time, not only annual but, above all, significant cultivar dependences in the interference of avenins to the G12 antibody were demonstrated. Genetic dependence was further confirmed in connection with the proven avenin polymorphism as well as immunoblotting with the identification of interfering peptides with the G12 antibody in the 25 and 30 kDa regions. It was the occurrence of two bands around 30 kDa that predominantly occurred in oat cultivars with a relatively higher content of cross-reactive avenins (12–16 mg·kg−1). Due to the fact that the contents of interfering avenins ranged in several cultivars even over 16 mg·kg−1, the choice of a suitable oat cultivar may be crucial for gluten-free food producers, as it reduces the risk of a possible false-response of the commercial ELISA kits when checking the real-gluten contamination.
Collapse
|
6
|
Abdellatef E, Kamal NM, Tsujimoto H. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses. Int J Mol Sci 2021; 22:ijms22147687. [PMID: 34299307 PMCID: PMC8306419 DOI: 10.3390/ijms22147687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Crop yield is severely affected by biotic and abiotic stresses. Plants adapt to these stresses mainly through gene expression reprogramming at the transcriptional and post-transcriptional levels. Recently, the exogenous application of double-stranded RNAs (dsRNAs) and RNA interference (RNAi) technology has emerged as a sustainable and publicly acceptable alternative to genetic transformation, hence, small RNAs (micro-RNAs and small interfering RNAs) have an important role in combating biotic and abiotic stresses in plants. RNAi limits the transcript level by either suppressing transcription (transcriptional gene silencing) or activating sequence-specific RNA degradation (post-transcriptional gene silencing). Using RNAi tools and their respective targets in abiotic stress responses in many crops is well documented. Many miRNAs families are reported in plant tolerance response or adaptation to drought, salinity, and temperature stresses. In biotic stress, the spray-induced gene silencing (SIGS) provides an intelligent method of using dsRNA as a trigger to silence target genes in pests and pathogens without producing side effects such as those caused by chemical pesticides. In this review, we focus on the potential of SIGS as the most recent application of RNAi in agriculture and point out the trends, challenges, and risks of production technologies. Additionally, we provide insights into the potential applications of exogenous RNAi against biotic stresses. We also review the current status of RNAi/miRNA tools and their respective targets on abiotic stress and the most common responsive miRNA families triggered by stress conditions in different crop species.
Collapse
Affiliation(s)
- Eltayb Abdellatef
- Commission for Biotechnology and Genetic Engineering, National Center for Research, P.O. Box 2404, Khartoum 11111, Sudan;
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan;
- Behavioural and Chemical Ecology Unit, International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi 00100, Kenya
| | - Nasrein Mohamed Kamal
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan;
- Agricultural Research Corporation, P.O. Box 30, Khartoum North 11111, Sudan
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan;
- Correspondence:
| |
Collapse
|