1
|
Xing S, Wang WJ, Wang L, Du H, Wu Z, Zong S, Cong Y, Ba S. Soil nutrient content dominates short-term vegetation changes in alpine tundra of Changbai Mountains. Front Microbiol 2024; 15:1422529. [PMID: 39220038 PMCID: PMC11362061 DOI: 10.3389/fmicb.2024.1422529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Alpine tundra, covering 3% of the Earth's land surface, harbors approximately 4% of higher plant species. Changes in this vegetation significantly impact biodiversity and ecosystem services. Recent studies have primarily focused on large-scale and long-term vegetation changes in polar and high-latitude regions. However, the study of short-term vegetation changes and their primary drivers has received insufficient attention in alpine tundra. This study aimed to investigate vegetation changes and their dominant drivers in the alpine tundra of Changbai Mountains-located at the southern edge of the alpine tundra distribution in Eastern Eurasia-over a short period by re-surveying permanent plots in 2019 and comparing them with data from 2014. The results showed that significant changes were observed in alpine tundra vegetation during the study period. The importance values of typical alpine tundra plants such as Rhododendron chrysanthum, Vaccinium uliginosum, and Dryas octopetala decreased noticeably, while those of herbaceous species such as Deyeuxia angustifolia and Sanguisorba sitchensis increased significantly. Species richness, diversity, and evenness at different altitudinal gradients showed varying degrees of increase. A distinct expansion trend of herbaceous species was observed in the alpine tundra, contributing to a shift in plant community composition toward herbaceous dominance. This shift might result in the meadowization of the dwarf shrub tundra. Our findings further revealed that soil nutrients rather than climate factors, dominated the changes of plant communities over a short period. These findings provide scientific references for the conservation and management of biodiversity, as well as for projecting future vegetation dynamics in alpine tundra.
Collapse
Affiliation(s)
- Shanfeng Xing
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Wen J. Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Lei Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Haibo Du
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Zhengfang Wu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Shengwei Zong
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Yu Cong
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Shengjie Ba
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| |
Collapse
|
2
|
Islam T, Hamid M, Nawchoo IA, Khuroo AA. Leaf functional traits vary among growth forms and vegetation zones in the Himalaya. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167274. [PMID: 37741392 DOI: 10.1016/j.scitotenv.2023.167274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Compression of life zones along elevational gradients in mountains supports diverse vegetation types, and therefore offers ideal setting to study plant functional traits. Functional traits, the features that enable plants to live in varied environmental conditions, help in understanding ecological interactions, evolutionary adaptations, and predicting plant response to global change drivers. To date, little is known how the trait diversity varies across different growth forms and vegetation zones in mountains. Here, we aimed to investigate interspecific leaf trait variability among different growth forms and vegetation zones along a wide elevation gradient (2000-4200 m) in Kashmir Himalaya. We measured leaf functional traits (specific leaf area-SLA, leaf thickness - LT, leaf dry matter content -LDMC) of 76 plant species corresponding to three growth forms (trees, shrubs and herbs) and three vegetation zones (Himalayan dry temperate forests, subalpine forests and alpine grasslands). Our results revealed high trait variability across the regional species pool studied. We found significant variation in leaf functional traits among the different growth forms, with higher values of LT and LDMC recorded for woody species than herbaceous ones. Among different vegetation zones, the SLA was found to be significantly higher at lower to middle elevations, while the other leaf traits (LT and LDMC) showed an opposite trend. Across all the vegetative zones, we also found a negative correlation between SLA and the other leaf traits, and the latter showed a positive trait-trait correlation. Overall, our study contributes to a deeper understanding of trait-trait, trait-growth form and trait-vegetation zone relationships. Our findings suggest that the variation in leaf functional traits among different growth forms seems to be a trade-off mechanism between resource acquisition and leaf construction, and also help in identifying species' adaptive functional traits that are critical for plant survival in the face of ongoing climate change in the Himalaya.
Collapse
Affiliation(s)
- Tajamul Islam
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India; Plant Reproductive Biology, Genetic Diversity and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Maroof Hamid
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Irshad A Nawchoo
- Plant Reproductive Biology, Genetic Diversity and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Anzar Ahmad Khuroo
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
3
|
Das S, Sarkar SK. Spatio-temporal variability of vegetation and its relation to different hydroclimatic factors in Bangladesh. Heliyon 2023; 9:e18412. [PMID: 37533977 PMCID: PMC10391951 DOI: 10.1016/j.heliyon.2023.e18412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
Bangladesh, known for its remarkable ecological diversity, is faced with the pressing challenges of contemporary climate change. It is crucial to understand how vegetation dynamics respond to different climatic factors. Hence, this study aimed to investigate the spatio-temporal variations of vegetation and their interconnectedness with a range of hydroclimatic factors. The majority of the dataset used in this study relies on MODIS satellite imagery. The Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), precipitation (PPT), evapotranspiration (ET), and land surface temperature (LST) data from the years 2001 to 2020 have been obtained from Google Earth Engine (GEE). In this study, the temporal variations of the NDVI, EVI, PPT, ET, and LST have been investigated. The findings of the Mann-Kendall trend test indicate noticeable trends in both the NDVI and the EVI. Sen's slope value for NDVI and EVI is 0.00424/year and 0.00256/year, respectively. Compared to NDVI, EVI has shown a stronger connection with hydroclimatic factors. In particular, EVI exhibits a better relationship with ET, as indicated by a r2 value of 0.37 and a P-value of 6.81 × 10-26, whereas NDVI exhibits a r2 value of 0.17 and a P-value of 2.96 × 10-11. Furthermore, ET can explain 17% of the fluctuation in NDVI, and no correlation between NDVI and PPT has been found. The results clarify the significant relationship between the EVI and hydroclimatic factors and highlight the efficiency of the EVI for detecting vegetation changes.
Collapse
|
4
|
Bhat IA, Fayaz M, Rafiq S, Guleria K, Qadir J, Wani TA, Kaloo ZA. Predicting potential distribution and range dynamics of Aquilegia fragrans under climate change: insights from ensemble species distribution modelling. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:623. [PMID: 37115430 DOI: 10.1007/s10661-023-11245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Climate change is one of the primary causes of species redistribution and biodiversity loss, especially for threatened and endemic important plant species. Therefore, it is vital to comprehend "how" and "where" priority medicinal and aromatic plants (MAPs) might be effectively used to address conservation-related issues under rapid climate change. In the present study, an ensemble modelling approach was used to investigate the present and future distribution patterns of Aquilegia fragrans Benth. under climate change in the entire spectrum of Himalayan biodiversity hotspot. The results of the current study revealed that, under current climatic conditions, the northwest states of India (Jammu and Kashmir, Himachal Pradesh and the northern part of Uttarakhand), the eastern and southern parts of Pakistan Himalaya have highly suitable climatic conditions for the growth of A. fragrans. The ensemble model exhibited high forecast accuracy, with temperature seasonality and precipitation seasonality as the main climatic variables responsible for the distribution of the A. fragrans in the biodiversity hotspot. Furthermore, the study predicted that future climate change scenarios will diminish habitat suitability for the species by -46.9% under RCP4.5 2050 and -55.0% under RCP4.5 2070. Likewise, under RCP8.5, the habitat suitability will decrease by -51.7% in 2050 and -94.3% in 2070. The current study also revealed that the western Himalayan area will show the most habitat loss. Some currently unsuitable regions, such as the northern Himalayan regions of Pakistan, will become more suitable under climate change scenarios. Hopefully, the current approach may provide a robust technique and showcases a model with learnings for predicting cultivation hotspots and developing scientifically sound conservation plans for this endangered medicinal plant in the Himalayan biodiversity hotspot.
Collapse
Affiliation(s)
- Irshad Ahmad Bhat
- Plant Tissue Culture Research Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India.
| | - Mudasir Fayaz
- Plant Tissue Culture Research Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| | - Shah Rafiq
- Plant Tissue Culture Research Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| | - Khushboo Guleria
- Department of Zoology, School of Bioscience and Bioengineering, Lovely Professional University, Punjab, 144411, India
| | - Jasfeeda Qadir
- Plant Tissue Culture Research Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| | - Tareq A Wani
- Plant Tissue Culture Research Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| | - Zahoor A Kaloo
- Plant Tissue Culture Research Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| |
Collapse
|
5
|
Satish KV, Dugesar V, Pandey MK, Srivastava PK, Pharswan DS, Wani ZA. Seeing from space makes sense: Novel earth observation variables accurately map species distributions over Himalaya. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116428. [PMID: 36272289 DOI: 10.1016/j.jenvman.2022.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/19/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Topical advances in earth observation have enabled spatially explicit mapping of species' fundamental niche limits that can be used for nature conservation and management applications. This study investigates the possibility of applying functional variables of ecosystem retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) onboard sensor data to map the species distribution of two alpine treeline species, namely Betula utilis D.Don and Rhododendron campanulatum D.Don over the Himalayan biodiversity hotspot. In this study, we have developed forty-nine Novel Earth Observation Variables (NEOVs) from MODIS products, an asset to the present investigation. To determine the effectiveness and ecological significance of NEOVs combinations, we built and compared four different models, namely, a bioclimatic model (BCM) with bioclimatic predictor variables, a phenology model (PhenoM) with earth observation derived phenological predictor variables, a biophysical model (BiophyM) with earth observation derived biophysical predictor variables, and a hybrid model (HM) with a combination of selected predictor variables from BCM, PhenoM, and BiophyM. All models utilized topographical variables by default. Models that include NEOVs were competitive for focal species, and models without NEOVs had considerably poor model performance and explanatory strength. To ascertain the accurate predictions, we assessed the congruence of predictions by pairwise comparisons of their performance. Among the three machine learning algorithms tested (artificial neural networks, generalised boosting model, and maximum entropy), maximum entropy produced the most promising predictions for BCM, PhenoM, BiophyM, and HM. Area under curve (AUC) and true skill statistic (TSS) scores for the BCM, PhenoM, BiophyM, and HM models derived from maximum entropy were AUC ≥0.9 and TSS ≥0.6 for the focal species. The overall investigation revealed the competency of NEOVs in the accurate prediction of species' fundamental niches, but conventional bioclimatic variables were unable to achieve such a level of precision. A principal component analysis of environmental spaces disclosed that niches of focal species substantially overlapped each other. We demonstrate that the use of satellite onboard sensors' biotic and abiotic variables with species occurrence data can provide precision and resolution for species distribution mapping at a scale that is relevant ecologically and at the operational scale of most conservation and management actions.
Collapse
Affiliation(s)
- K V Satish
- Remote Sensing Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Vikas Dugesar
- Remote Sensing Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Manish K Pandey
- Remote Sensing Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India; Center for Quantitative Economics and Data Science, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Prashant K Srivastava
- Remote Sensing Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India.
| | - Dalbeer S Pharswan
- G.B Pant National Institute of Himalayan Environment (NIHE), Kosi-Katarmal, Almora, 263643, India
| | - Zishan Ahmad Wani
- Conservation Ecology Lab, Department of Botany, Baba Ghulam Shah Badshah University Rajouri, Jammu and Kashmir, 185234, India
| |
Collapse
|
6
|
Rolli E, Marasco R, Fusi M, Scaglia B, Schubotz F, Mapelli F, Ciccazzo S, Brusetti L, Trombino L, Tambone F, Adani F, Borin S, Daffonchio D. Environmental micro-niche filtering shapes bacterial pioneer communities during primary colonization of a Himalayas' glacier forefield. Environ Microbiol 2022; 24:5998-6016. [PMID: 36325730 PMCID: PMC10099744 DOI: 10.1111/1462-2920.16268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
The pedogenesis from the mineral substrate released upon glacier melting has been explained with the succession of consortia of pioneer microorganisms, whose structure and functionality are determined by the environmental conditions developing in the moraine. However, the microbiome variability that can be expected in the environmentally heterogeneous niches occurring in a moraine at a given successional stage is poorly investigated. In a 50 m2 area in the forefield of the Lobuche glacier (Himalayas, 5050 m above sea level), we studied six sites of primary colonization presenting different topographical features (orientation, elevation and slope) and harbouring greyish/dark biological soil crusts (BSCs). The spatial vicinity of the sites opposed to their topographical differences, allowed us to examine the effect of environmental conditions independently from the time of deglaciation. The bacterial microbiome diversity and their co-occurrence network, the bacterial metabolisms predicted from 16S rRNA gene high-throughput sequencing, and the microbiome intact polar lipids were investigated in the BSCs and the underlying sediment deep layers (DLs). Different bacterial microbiomes inhabited the BSCs and the DLs, and their composition varied among sites, indicating a niche-specific role of the micro-environmental conditions in the bacterial communities' assembly. In the heterogeneous sediments of glacier moraines, physico-chemical and micro-climatic variations at the site-spatial scale are crucial in shaping the microbiome microvariability and structuring the pioneer bacterial communities during pedogenesis.
Collapse
Affiliation(s)
- Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Centre for Conservation and Restoration Science, Edinburgh Napier University, Edinburgh, UK
| | - Barbara Scaglia
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Gruppo Ricicla Lab, University of Milan, Milan, Italy
| | - Florence Schubotz
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Sonia Ciccazzo
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Luca Trombino
- Department of Earth Sciences 'Ardito Desio', University of Milan, Milan, Italy
| | - Fulvia Tambone
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Gruppo Ricicla Lab, University of Milan, Milan, Italy
| | - Fabrizio Adani
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Gruppo Ricicla Lab, University of Milan, Milan, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
7
|
Mendoza-Fernández AJ, Fernández-Ceular Á, Alcaraz-Segura D, Ballesteros M, Peñas J. The Fate of Endemic Species Specialized in Island Habitat under Climate Change in a Mediterranean High Mountain. PLANTS (BASEL, SWITZERLAND) 2022; 11:3193. [PMID: 36501233 PMCID: PMC9739314 DOI: 10.3390/plants11233193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Mediterranean high-mountain endemic species are particularly vulnerable to climatic changes in temperature, precipitation and snow-cover dynamics. Sierra Nevada (Spain) is a biodiversity hotspot in the western Mediterranean, with an enormous plant species richness and endemicity. Moehringia fontqueri is a threatened endemic plant restricted to north-facing siliceous rocks along a few ridges of the eastern Sierra Nevada. To guide conservation actions against climate change effects, here we propose the simultaneous assessment of the current reproductive success and the possible species' range changes between current and future climatic conditions, assessing separately different subpopulations by altitude. Reproductive success was tested through the seed-set data analysis. The species' current habitat suitability was modeled in Maxent using species occurrences, topographic, satellite and climatic variables. Future habitat suitability was carried out for two climatic scenarios (RCP 2.6 and 8.5). The results showed the lowest reproductive success at the lowest altitudes, and vice versa at the highest altitudes. Habitat suitability decreased by 80% from current conditions to the worst-case scenario (RCP 8.5). The lowest subpopulations were identified as the most vulnerable to climate change effects while the highest ones were the nearest to future suitable habitats. Our simultaneous assessment of reproductive success and habitat suitability aims to serve as a model to guide conservation, management and climate change mitigation strategies through adaptive management to safeguard the persistence of the maximum genetic pool of Mediterranean high-mountain plants threatened by climate change.
Collapse
Affiliation(s)
- Antonio J. Mendoza-Fernández
- Department of Biology and Geology, CEIMAR, CecoUAL, University of Almería, 04120 Almería, Spain
- Department of Botany, University of Granada, 18071 Granada, Spain
| | | | - Domingo Alcaraz-Segura
- Department of Botany, University of Granada, 18071 Granada, Spain
- Andalusian Center for the Assessment and Monitoring of Global Change (CAESCG), University of Almería, 04120 Almería, Spain
- iEcolab, Inter-University Institute for Earth System Research, University of Granada, 18006 Granada, Spain
| | - Miguel Ballesteros
- Department of Botany, University of South Bohemia, CZ-37005 České Budějovice, Czech Republic
| | - Julio Peñas
- Department of Botany, University of Granada, 18071 Granada, Spain
- Andalusian Center for the Assessment and Monitoring of Global Change (CAESCG), University of Almería, 04120 Almería, Spain
| |
Collapse
|
8
|
Malik RA, Reshi ZA, Rafiq I, Singh SP. Decline in the suitable habitat of dominant Abies species in response to climate change in the Hindu Kush Himalayan region: insights from species distribution modelling. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:596. [PMID: 35861887 DOI: 10.1007/s10661-022-10245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Reliable predictions of future distribution ranges of ecologically important species in response to climate change are required for developing effective management strategies. Here we used an ensemble modelling approach to predict the distribution of three important species of Abies namely, Abies pindrow, Abies spectabilis and Abies densa in the Hindu Kush Himalayan region under the current and two shared socioeconomic pathways (SSP245 and SSP585) and time periods of 2050 and 2090s. A correlative ensemble model using presence/absence data of the three Abies species and 22 environmental variables, including 19 bioclimatic variables and 3 topographic variables, from known distributions was built to predict the potential current and future distribution of these species. The individual models used to build the final ensemble performed well and provided reliable results for both the current and future distribution of all three species. For A. pindrow, precipitation of the driest month (Bio14) was the most important environmental variable with 83.3% contribution to model output while temperature seasonality (Bio4) and annual mean diurnal range (Bio2) were the most important variables for A. spectabilis and A. densa with 48.4% and 46.1% contribution to final model output, respectively. Under current climatic conditions, the ensemble models projected a total suitable habitat of about 433,003 km2, 790,837 km2 and 676,918 km2 for A. pindrow, A. spectabilis and A. densa, respectively, which is approximately 10.36%, 18.91% and 16.91% of the total area of Hindu Kush Himalayan region. Projections of habitat suitability under future climate scenarios for all the shared socioeconomic pathways showed a reduction in potentially suitable habitats with a maximum overall loss of approximately 14% of the total suitable area of A. pindrow under SSP 8.5 by 2090. A decline in total suitable habitat is predicted to be 9.6% in A. spectabilis by 2090 under the SSP585 scenario while in A. densa 6.67% loss in the suitable area is expected by 2050 under the SSP585 scenario. Furthermore, there is no elevational change predicted in the case of A. pindrow while A. spectabilis is expected to show an upward shift by about 29 m per decade and A. densa is showing a downward shift at a rate of 11 m per decade. The results are interesting, and intriguing given the occurrence of these species across the Hindu Kush Himalayan region. Thus, our study underscores the need for consideration of unexpected responses of species to climate change and formulation of strategies for better forest management and conservation of important conifer species, such as A. pindrow, A. spectabilis and A. densa.
Collapse
Affiliation(s)
- Rayees A Malik
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, India.
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Iflah Rafiq
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - S P Singh
- Central Himalayan Environment Association, Dehradun, India
| |
Collapse
|
9
|
Wani SA, Ahmad R, Gulzar R, Rashid I, Malik AH, Rashid I, Khuroo AA. Diversity, Distribution and Drivers of Alien Flora in the Indian Himalayan Region. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Aijaz Hassan Ganie, Tariq Ahmad Butt, Anzar Ahmad Khuroo, Nazima Rasool, Rameez Ahmad, Syed Basharat, Zafar A. Reshi. Taxonomy and threat assessment of Lagotis kunawurensis Rupr. (Plantaginaceae), an endemic medicinal plant species of the Himalaya, India. JOURNAL OF THREATENED TAXA 2022. [DOI: 10.11609/jott.5977.14.6.21239-21245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Lagotis kunawurensis Rupr. (Plantaginaceae), a rare plant species endemic to the Himalaya, is reported here after a gap of 50 years from Ladakh. This species has often been taxonomically misidentified and confused with Picrorhiza kurroa, an important medicinal plant of the Himalaya. The present study clarifies the taxonomy of L. kunawurensis by providing description and photo illustrations of diagnostic characters which will aid its proper field identification. Furthermore, the threat assessment of L. kunawurensis using the IUCN Red List of Threatened Species has been conducted based on the available occurrence records, and the species currently falls under the ‘Near Threatened’ category. This species is used for medicinal purposes by locals in the study area. As the species is simultaneously experiencing various kinds of threats and the known distribution range is relatively smaller, it is right time to develop conservation strategies for the sustainable utilization of this endemic medicinal plant species of the Himalaya.
Collapse
|
11
|
Gulzar A, Hamid M, Dar FA, Wani SA, Malik AH, Kamili AN, Singh CP, Khuroo AA. Patterns of floristic and functional diversity in two treeline ecotone sites of Kashmir Himalaya. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:420. [PMID: 35543773 DOI: 10.1007/s10661-022-10044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/09/2022] [Indexed: 06/15/2023]
Abstract
Globally, the treelines at higher elevations in mountains are reported to be advancing up-slope in response to recent climate warming. However, little is known about the treeline advancement in the Himalaya due to paucity of baseline vegetation data with which to compare, thus making their assessment and monitoring challenging. To fill this knowledge gap, the present study documented floristic and functional diversity of two treeline ecotone sites in Kashmir Himalaya. At each site, we conducted field sampling by laying five 20-m2 plots, with one at the highest limit (T0 plot), two plots below and two above the treeline and two nested subplots of 5-m2 for shrubs and five 1-m2 for herbs in each plot. We recorded 97 plant species belonging to 33 families from the two sites. We observed a considerable difference in species composition and distribution along the treeline ecotone. Majority of the species reported were perennial herbs. We observed a significant association of growth forms with the particular plots along the treeline ecotone. At both the sites, we recorded highest species richness at the T0 plot which was correlated well with the functional traits, thus indicating convergence of floristic and functional diversity at this transition zone. Interestingly, the T0 plot at both the sites showed maximum overlap of species with the plots above and below the treeline. In an era of climate warming, our study provides crucial baseline data that will facilitate assessment and monitoring of the Himalayan treelines.
Collapse
Affiliation(s)
- Aadil Gulzar
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190 006, India
- Department of Environmental Science, University of Kashmir, Srinagar, Jammu and Kashmir, 190 006, India
| | - Maroof Hamid
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190 006, India
| | - Firdous A Dar
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190 006, India
| | - Sajad A Wani
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190 006, India
| | - Akhtar H Malik
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190 006, India
| | - Azra N Kamili
- Department of Environmental Science, University of Kashmir, Srinagar, Jammu and Kashmir, 190 006, India
- Department of Botany, Central University of Kashmir, Ganderbal, Jammu and Kashmir, 191 201, India
| | - C P Singh
- Space Applications Centre, Indian Space Research Organisation, Ahmedabad, 380 015, India
| | - Anzar Ahmad Khuroo
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190 006, India.
| |
Collapse
|
12
|
The Sela macaque (Macaca selai) is a distinct phylogenetic species that evolved from the Arunachal macaque following allopatric speciation. Mol Phylogenet Evol 2022; 174:107513. [DOI: 10.1016/j.ympev.2022.107513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
|
13
|
Rawat N, Purohit S, Painuly V, Negi GS, Bisht MPS. Habitat distribution modeling of endangered medicinal plant Picrorhiza kurroa (Royle ex Benth) under climate change scenarios in Uttarakhand Himalaya, India. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2021.101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Hu X, Arif M, Ding D, Li J, He X, Li C. Invasive Plants and Species Richness Impact Litter Decomposition in Riparian Zones. FRONTIERS IN PLANT SCIENCE 2022; 13:955656. [PMID: 35873999 PMCID: PMC9301390 DOI: 10.3389/fpls.2022.955656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 05/03/2023]
Abstract
Natural ecosystems generally include litter decomposition as part of the natural cycle since the material properties and the environment greatly influence the decomposition rate. The invasion of exotic plants alters the species diversity and growth characteristics of plant communities, but its impact on litter decomposition is unknown in the riparian zone. This study examines how invasive plants affect the early stages of litter decomposition and how species richness impacts them. This experiment involved a random litter mixture of exotic (Alternanthera philoxeroides and Bidens pilosa) and native species in the riparian zone of the Three Gorges Dam Reservoir in China. There were 43 species mixture types, with various species richness ranging from 1 to 6. Litterbags were placed in the hydro-fluctuation zone and terrestrial zone, where they decomposed over the course of 55 days. Invasive plants decompose rapidly compared to native plants (35.71% of the remaining mass of the invasive plant). The invasive plant A. philoxeroides has the potential to accelerate native plant decomposition (0.29 of non-added synergetic effect), but Bidens pilosa cannot. Nonetheless, species richness had little effect on the decomposition rate. These effects are dependent upon differences in chemical functional characteristics among the species. The initial traits of the plants, specifically C, N, and C/N, were significantly and linearly correlated with the loss of mixed litter mass and mixing effect strength (P < 0.01). In addition, submergence decomposition conditions reduce the disturbance of invasive plants and predict decomposition rates based on litter characteristics. Invasive plants can therefore impact the material cycle of an ecosystem. There is a need to examine decomposition time, which may also involve considering other factors.
Collapse
Affiliation(s)
- Xin Hu
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
| | - Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, China
| | - Dongdong Ding
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
| | - Jiajia Li
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
| | - Xinrui He
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
| | - Changxiao Li
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
- *Correspondence: Changxiao Li
| |
Collapse
|
15
|
Hassan T, Hamid M, Wani SA, Malik AH, Waza SA, Khuroo AA. Substantial shifts in flowering phenology of Sternbergia vernalis in the Himalaya: Supplementing decadal field records with historical and experimental evidences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148811. [PMID: 34246140 DOI: 10.1016/j.scitotenv.2021.148811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
In an age of anthropocene, shifting plant phenology is one of the most striking biological indicators of global environmental change. Majority of the studies reporting shifts in plant phenology are available from the North America and Europe and largely scarce from the developing world, including the Himalaya; and studies integrating multiple methodological approaches to investigate the climate-driven phenological shifts are too rare. Here, we report the shifts in spring flowering phenology of model plant species, Sternbergia vernalis in response to the changing climate in Kashmir Himalaya, by integrating decadal field observational records with long-term herbarium and dated-photograph data, and supported with experimental evidences. Our results revealed a significant increasing trend of 0.038, 0.016 and 0.023 °C/year in the annual mean maximum temperature (Tmax), mean minimum temperature (Tmin) and diurnal temperature range (DTR) respectively; but an insignificant decreasing trend in annual precipitation of -1.24 mm/year over the last four decades (1980-2019) in this Himalayan region. The flowering phenology of S. vernalis has significantly advanced by 11.8 days/°C and 27.8 days/°C increase in Tmax and Tmin respectively, indicating that the climate warming has led to substantial shifts in flowering phenology of the model plant species. We also observed a strong association of seasonal Tmax (December-February) and DTR on the early onset of spring flowering, however precipitation had no significant effect on the timing of flowering. The greenhouse experiment results further supported a significant effect of temperature in triggering the phenological shifts, wherein the model plant grown under different temperature treatments flowered 9-20 days earlier compared to the control. Our study showcases the integrated use of multiple methodological approaches for unravelling the long-term phenological shifts in response to climate change, and contributes in filling the knowledge gaps in the phenological research from the developing world in general and the Himalaya in particular.
Collapse
Affiliation(s)
- Tabasum Hassan
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar 190 006, J&K, India
| | - Maroof Hamid
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar 190 006, J&K, India
| | - Sajad A Wani
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar 190 006, J&K, India
| | - Akhtar H Malik
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar 190 006, J&K, India
| | - Showkat A Waza
- Mountain Crop Research Station (Sagam), SKUAST Kashmir, Anantnag 192 124, J&K, India
| | - Anzar A Khuroo
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar 190 006, J&K, India.
| |
Collapse
|
16
|
Duchicela SA, Cuesta F, Tovar C, Muriel P, Jaramillo R, Salazar E, Pinto E. Microclimatic Warming Leads to a Decrease in Species and Growth Form Diversity: Insights From a Tropical Alpine Grassland. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.673655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Due to warming, changes in microclimatic temperatures have shifted plant community structure and dynamics in tundra and alpine regions. The directionality and magnitude of these changes are less known for tropical alpine ecosystems. To understand the likely trajectory of these shifts in the Andes, we conducted a warming experiment in the northern Andes—using open-top chambers (OTC). In this study, we ask (1) how do OTCs affect air and soil temperatures in microclimates of tropical alpine regions, year-round and during the dry season? (2) What are the effects of 7 years of warming on (a) the aboveground biomass (AGB) and (b) the plant taxonomic and growth form diversity? We installed five monitoring blocks in 2012 at ca. 4,200 m asl with 20 OTCs and 50 control plots randomly distributed within each block. We measured AGB, plant community diversity, and growth form diversity between 2014 and 2019. After 7 years of warming, we found significant increases in mean monthly (+0.24°C), daily (+0.16°C), and night air temperatures (+0.33°C) inside the OTCs, and the OTCs intensified microclimatic conditions during the dry season. Additionally, OTCs attenuated extreme temperatures—particularly in the soil—and the number of freezing events. AGB significantly increased in OTCs, and by 2019, it was 27% higher in OTCs than in control. These changes were driven mainly by a progressive increment of tussock grasses such as Calamagrostis intermedia, typical of lower elevations. The increase of tussocks led to a significant decrease in species diversity and evenness inside OTCs, but not in species richness after accounting by sampling time. Furthermore, cushions and herbs decreased inside OTCs. Our results show that experimental warming using OTCs in equatorial regions leads to decreased daily thermal amplitude and night temperatures rather than the level of increase in mean temperatures observed in temperate regions. The increase of tussocks and decrease in diversity of species and growth forms due to prolonged modifications in microclimatic temperature might be a step toward shrub-dominated ecosystems. Further research on this topic would help understand shifts in growth form dominance and the direction and rate of change of the system.
Collapse
|
17
|
A Long-Term Spatiotemporal Analysis of Vegetation Greenness over the Himalayan Region Using Google Earth Engine. CLIMATE 2021. [DOI: 10.3390/cli9070109] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Himalayas constitute one of the richest and most diverse ecosystems in the Indian sub-continent. Vegetation greenness driven by climate in the Himalayan region is often overlooked as field-based studies are challenging due to high altitude and complex topography. Although the basic information about vegetation cover and its interactions with different hydroclimatic factors is vital, limited attention has been given to understanding the response of vegetation to different climatic factors. The main aim of the present study is to analyse the relationship between the spatiotemporal variability of vegetation greenness and associated climatic and hydrological drivers within the Upper Khoh River (UKR) Basin of the Himalayas at annual and seasonal scales. We analysed two vegetation indices, namely, normalised difference vegetation index (NDVI) and enhanced vegetation index (EVI) time-series data, for the last 20 years (2001–2020) using Google Earth Engine. We found that both the NDVI and EVI showed increasing trends in the vegetation greening during the period under consideration, with the NDVI being consistently higher than the EVI. The mean NDVI and EVI increased from 0.54 and 0.31 (2001), respectively, to 0.65 and 0.36 (2020). Further, the EVI tends to correlate better with the different hydroclimatic factors in comparison to the NDVI. The EVI is strongly correlated with ET with r2 = 0.73 whereas the NDVI showed satisfactory performance with r2 = 0.45. On the other hand, the relationship between the EVI and precipitation yielded r2 = 0.34, whereas there was no relationship was observed between the NDVI and precipitation. These findings show that there exists a strong correlation between the EVI and hydroclimatic factors, which shows that changes in vegetation phenology can be better captured using the EVI than the NDVI.
Collapse
|
18
|
Hamid M, Khuroo AA, Malik AH, Ahmad R, Singh CP. Elevation and aspect determine the differences in soil properties and plant species diversity on Himalayan mountain summits. Ecol Res 2021. [DOI: 10.1111/1440-1703.12202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Maroof Hamid
- Centre for Biodiversity and Taxonomy, Department of Botany University of Kashmir Srinagar India
| | - Anzar Ahmad Khuroo
- Centre for Biodiversity and Taxonomy, Department of Botany University of Kashmir Srinagar India
| | - Akhtar Hussain Malik
- Centre for Biodiversity and Taxonomy, Department of Botany University of Kashmir Srinagar India
| | - Rameez Ahmad
- Centre for Biodiversity and Taxonomy, Department of Botany University of Kashmir Srinagar India
| | | |
Collapse
|