1
|
Hernandez M, Suni S. Effects of landscape, resource use, and body size on genetic structure in bee populations. Ecol Evol 2024; 14:e11358. [PMID: 38742185 PMCID: PMC11089087 DOI: 10.1002/ece3.11358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Quantifying genetic structure and levels of genetic variation are fundamentally important to predicting the ability of populations to persist in human-altered landscapes and adapt to future environmental changes. Genetic structure reflects the dispersal of individuals over generations, which can be mediated by species-level traits or environmental factors. Dispersal distances are commonly positively associated with body size and negatively associated with the amount of degraded habitat between sites, motivating the investigation of these potential drivers of dispersal concomitantly. We quantified genetic structure and genetic variability within populations of seven bee species from the genus Euglossa across fragmented landscapes. We genotyped bees at SNP loci and tested the following predictions: (1) deforested areas restrict gene flow; (2) larger species have lower genetic structure; (3) species with greater resource specialization have higher genetic structure; and (4) sites surrounded by more intact habitat have higher genetic diversity. Contrasting with previous work on bees, we found no associations between body size and genetic structure. Genetic structure was higher for species with greater resource specialization, and the amount of intact habitat between or surrounding sites was positively associated with parameters reflecting gene flow and genetic diversity. These results challenge the dominant paradigm that individuals of larger species disperse farther, and they suggest that landscape and resource requirements are important factors mediating dispersal.
Collapse
Affiliation(s)
| | - Sevan Suni
- The University of San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
2
|
Bisang I, Ehrlén J, Hedenäs L. Life-history characteristics and historical factors are important to explain regional variation in reproductive traits and genetic diversity in perennial mosses. ANNALS OF BOTANY 2023; 132:29-42. [PMID: 36928083 PMCID: PMC10550275 DOI: 10.1093/aob/mcad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND AIMS Plants have evolved an unrivalled diversity of reproductive strategies, including variation in the degree of sexual vs. clonal reproduction. This variation has important effects on the dynamics and genetic structure of populations. We examined the association between large-scale variation in reproductive patterns and intraspecific genetic diversity in two moss species where sex is manifested in the dominant haploid generation and sex expression is irregular. We predicted that in regions with more frequent realized sexual reproduction, populations should display less skewed sex ratios, should more often express sex and should have higher genetic diversity than in regions with largely clonal reproduction. METHODS We assessed reproductive status and phenotypic sex in the dioicous long-lived Drepanocladus trifarius and D. turgescens, in 248 and 438 samples across two regions in Scandinavia with frequent or rare realized sexual reproduction, respectively. In subsets of the samples, we analysed genetic diversity using nuclear and plastid sequence information and identified sex with a sex-specific molecular marker in non-reproductive samples. KEY RESULTS Contrary to our predictions, sex ratios did not differ between regions; genetic diversity did not differ in D. trifarius and it was higher in the region with rare sexual reproduction in D. turgescens. Supporting our predictions, relatively more samples expressed sex in D. trifarius in the region with frequent sexual reproduction. Overall, samples were mostly female. The degree of sex expression and genetic diversity differed between sexes. CONCLUSIONS Sex expression levels, regional sex ratios and genetic diversity were not directly associated with the regional frequency of realized sexual reproduction, and relationships and variation patterns differed between species. We conclude that a combination of species-specific life histories, such as longevity, overall degree of successful sexual reproduction and recruitment, and historical factors are important to explain this variation. Our data on haploid-dominated plants significantly complement plant reproductive biology.
Collapse
Affiliation(s)
- Irene Bisang
- Department of Botany, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lars Hedenäs
- Department of Botany, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
| |
Collapse
|
3
|
Shaw AJ, Duffy AM, Nieto-Lugilde M, Aguero B, Schuette S, Robinson S, Loveland J, Hicks KA, Weston D, Piatkowski B, Kolton M, Koska JE, Healey AL. Clonality, local population structure and gametophyte sex ratios in cryptic species of the Sphagnum magellanicum complex. ANNALS OF BOTANY 2023; 132:77-94. [PMID: 37417448 PMCID: PMC10550268 DOI: 10.1093/aob/mcad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND AND AIMS Sphagnum (peatmoss) comprises a moss (Bryophyta) clade with ~300-500 species. The genus has unparalleled ecological importance because Sphagnum-dominated peatlands store almost a third of the terrestrial carbon pool and peatmosses engineer the formation and microtopography of peatlands. Genomic resources for Sphagnum are being actively expanded, but many aspects of their biology are still poorly known. Among these are the degree to which Sphagnum species reproduce asexually, and the relative frequencies of male and female gametophytes in these haploid-dominant plants. We assess clonality and gametophyte sex ratios and test hypotheses about the local-scale distribution of clones and sexes in four North American species of the S. magellanicum complex. These four species are difficult to distinguish morphologically and are very closely related. We also assess microbial communities associated with Sphagnum host plant clones and sexes at two sites. METHODS Four hundred and five samples of the four species, representing 57 populations, were subjected to restriction site-associated DNA sequencing (RADseq). Analyses of population structure and clonality based on the molecular data utilized both phylogenetic and phenetic approaches. Multi-locus genotypes (genets) were identified using the RADseq data. Sexes of sampled ramets were determined using a molecular approach that utilized coverage of loci on the sex chromosomes after the method was validated using a sample of plants that expressed sex phenotypically. Sex ratios were estimated for each species, and populations within species. Difference in fitness between genets was estimated as the numbers of ramets each genet comprised. Degrees of clonality [numbers of genets/numbers of ramets (samples)] within species, among sites, and between gametophyte sexes were estimated. Sex ratios were estimated for each species, and populations within species. Sphagnum-associated microbial communities were assessed at two sites in relation to Sphagnum clonality and sex. KEY RESULTS All four species appear to engage in a mixture of sexual and asexual (clonal) reproduction. A single ramet represents most genets but two to eight ramets were dsumbers ansd text etected for some genets. Only one genet is represented by ramets in multiple populations; all other genets are restricted to a single population. Within populations ramets of individual genets are spatially clustered, suggesting limited dispersal even within peatlands. Sex ratios are male-biased in S. diabolicum but female-biased in the other three species, although significantly so only in S. divinum. Neither species nor males/females differ in levels of clonal propagation. At St Regis Lake (NY) and Franklin Bog (VT), microbial community composition is strongly differentiated between the sites, but differences between species, genets and sexes were not detected. Within S. divinum, however, female gametophytes harboured two to three times the number of microbial taxa as males. CONCLUSIONS These four Sphagnum species all exhibit similar reproductive patterns that result from a mixture of sexual and asexual reproduction. The spatial patterns of clonally replicated ramets of genets suggest that these species fall between the so-called phalanx patterns, where genets abut one another but do not extensively mix because of limited ramet fragmentation, and the guerrilla patterns, where extensive genet fragmentation and dispersal result in greater mixing of different genets. Although sex ratios in bryophytes are most often female-biased, both male and female biases occur in this complex of closely related species. The association of far greater microbial diversity for female gametophytes in S. divinum, which has a female-biased sex ratio, suggests additional research to determine if levels of microbial diversity are consistently correlated with differing patterns of sex ratio biases.
Collapse
Affiliation(s)
- A Jonathan Shaw
- Department of Biology & L. E. Anderson Bryophyte Herbarium, Duke University, Durham, NC, 27708, USA
| | - Aaron M Duffy
- Department of Biology & L. E. Anderson Bryophyte Herbarium, Duke University, Durham, NC, 27708, USA
| | - Marta Nieto-Lugilde
- Department of Biology & L. E. Anderson Bryophyte Herbarium, Duke University, Durham, NC, 27708, USA
| | - Blanka Aguero
- Department of Biology & L. E. Anderson Bryophyte Herbarium, Duke University, Durham, NC, 27708, USA
| | - Scott Schuette
- Pennsylvania Natural Heritage Program, Western Pennsylvania Conservancy, Pittsburgh, PA, 15222, USA
| | - Sean Robinson
- Department of Biology, SUNY Oneonta, Oneonta, NY, 13820, USA
| | - James Loveland
- Department of Biology, Kenyon College, Gambier, OH 43022, USA
| | - Karen A Hicks
- Department of Biology, Kenyon College, Gambier, OH 43022, USA
| | - David Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Bryan Piatkowski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Max Kolton
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel
| | - Joel E Koska
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Adam L Healey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
4
|
Calleja JA, Domènech G, Sáez L, Lara F, Garilleti R, Albertos B. Extinction risk of threatened and non-threatened mosses: Reproductive and ecological patterns. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|