1
|
Gupta R, Kumar V, Verma N, Tewari RK. Nitric oxide-mediated regulation of macronutrients in plants. Nitric Oxide 2024; 153:13-25. [PMID: 39389288 DOI: 10.1016/j.niox.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/08/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
In plant physiology, nitric oxide (NO) is a widely used signaling molecule. It is a free radical and an important component of the N-cycle. NO is produced endogenously inside plant cells, where it participates in multiple functions and provides protection against several abiotic and biotic stresses. NO and its interplay with macronutrients had remarkable effects on plant growth and development, the signaling pathway, and defense mechanisms. Its chemical properties, synthetic pathways, physiological effects, antioxidant action, signal transduction, and regulation of transporter genes and proteins have been studied. NO emerges as a key regulator under macronutrient deficiency. In plants, NO also affects reactive oxygen species (ROS), reactive nitrogen species (RNS), and post-translational modifications (PTMs). The function of NO and its significant control in the functions and adjustments of macronutrients under macronutrient deficit were summed up in this review. NO regulate functions of macronutrients and associated signaling events involved with macronutrient transporters in different plants.
Collapse
Affiliation(s)
- Roshani Gupta
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Vijay Kumar
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Nikita Verma
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | | |
Collapse
|
2
|
Yong S, Chen Q, Xu F, Fu H, Liang G, Guo Q. Exploring the interplay between angiosperm chlorophyll metabolism and environmental factors. PLANTA 2024; 260:25. [PMID: 38861219 PMCID: PMC11166782 DOI: 10.1007/s00425-024-04437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
MAIN CONCLUSION In this review, we summarize how chlorophyll metabolism in angiosperm is affected by the environmental factors: light, temperature, metal ions, water, oxygen, and altitude. The significance of chlorophyll (Chl) in plant leaf morphogenesis and photosynthesis cannot be overstated. Over time, researchers have made significant advancements in comprehending the biosynthetic pathway of Chl in angiosperms, along with the pivotal enzymes and genes involved in this process, particularly those related to heme synthesis and light-responsive mechanisms. Various environmental factors influence the stability of Chl content in angiosperms by modulating Chl metabolic pathways. Understanding the interplay between plants Chl metabolism and environmental factors has been a prominent research topic. This review mainly focuses on angiosperms, provides an overview of the regulatory mechanisms governing Chl metabolism, and the impact of environmental factors such as light, temperature, metal ions (iron and magnesium), water, oxygen, and altitude on Chl metabolism. Understanding these effects is crucial for comprehending and preserving the homeostasis of Chl metabolism.
Collapse
Affiliation(s)
- Shunyuan Yong
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Qian Chen
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Fan Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Hao Fu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Guolu Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Qigao Guo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China.
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
3
|
Shi Y, Jin X, Ackah M, Amoako FK, Li J, Tsigbey VE, Li H, Cui Z, Sun L, Zhao C, Zhao W. Comparative Physio-Biochemical and Transcriptome Analyses Reveal Contrasting Responses to Magnesium Imbalances in Leaves of Mulberry ( Morus alba L.) Plants. Antioxidants (Basel) 2024; 13:516. [PMID: 38790621 PMCID: PMC11117640 DOI: 10.3390/antiox13050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Magnesium (Mg) deficiency is a major factor limiting the growth and development of plants. Mulberry (Morus alba L.) is an important fruit tree crop that requires Mg for optimal growth and yield, especially in acid soils. However, the molecular mechanism of Mg stress tolerance in mulberry plants remains unknown. In this study, we used next-generation sequencing technology and biochemical analysis to profile the transcriptome and physiological changes of mulberry leaves under different Mg treatments (deficiency: 0 mM, low: 1 mM, moderate low: 2 mM, sufficiency: 3 mM, toxicity: 6 mM, higher toxicity: 9 mM) as T1, T2, T3, CK, T4, T5 treatments, respectively, for 20 days. The results showed that Mg imbalance altered the antioxidant enzymatic activities, such as catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), and non-enzymatic, including soluble protein, soluble sugar, malondialdehyde (MDA), and proline (PRO), contents of the plant. The Mg imbalances disrupted the ultrastructures of the vital components of chloroplast and mitochondria relative to the control. The transcriptome data reveal that 11,030 genes were differentially expressed (DEGs). Genes related to the photosynthetic processes (CAB40, CAB7, CAB6A, CAB-151, CAP10A) and chlorophyll degradation (PAO, CHLASE1, SGR) were altered. Antioxidant genes such as PER42, PER21, and PER47 were downregulated, but DFR was upregulated. The carbohydrate metabolism pathway was significantly altered, while those involved in energy metabolism processes were perturbed under high Mg treatment compared with control. We also identified several candidate genes associated with magnesium homeostasis via RT-qPCR validation analysis, which provided valuable information for further functional characterization studies such as promoter activity assay or gene overexpression experiments using transient expression systems.
Collapse
Affiliation(s)
- Yisu Shi
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xin Jin
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Frank Kwarteng Amoako
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany;
| | - Jianbin Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Victor Edem Tsigbey
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Haonan Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zipei Cui
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Longwei Sun
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Chengfeng Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
4
|
Danso B, Ackah M, Jin X, Ayittey DM, Amoako FK, Zhao W. Genome-Wide Analysis of the Xyloglucan Endotransglucosylase/Hydrolase ( XTH) Gene Family: Expression Pattern during Magnesium Stress Treatment in the Mulberry Plant ( Morus alba L.) Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:902. [PMID: 38592929 PMCID: PMC10975095 DOI: 10.3390/plants13060902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Mulberry (Morus alba L.), a significant fruit tree crop, requires magnesium (Mg) for its optimal growth and productivity. Nonetheless, our understanding of the molecular basis underlying magnesium stress tolerance in mulberry plants remains unexplored. In our previous study, we identified several differential candidate genes associated with Mg homeostasis via transcriptome analysis, including the xyloglucan endotransglucosylase/hydrolase (XTH) gene family. The XTH gene family is crucial for plant cell wall reconstruction and stress responses. These genes have been identified and thoroughly investigated in various plant species. However, there is no research pertaining to XTH genes within the M. alba plant. This research systematically examined the M. alba XTH (MaXTH) gene family at the genomic level using a bioinformatic approach. In total, 22 MaXTH genes were discovered and contained the Glyco_hydro_16 and XET_C conserved domains. The MaXTHs were categorized into five distinct groups by their phylogenetic relationships. The gene structure possesses four exons and three introns. Furthermore, the MaXTH gene promoter analysis reveals a plethora of cis-regulatory elements, mainly stress responsiveness, phytohormone responsiveness, and growth and development. GO analysis indicated that MaXTHs encode proteins that exhibit xyloglucan xyloglucosyl transferase and hydrolase activities in addition to cell wall biogenesis as well as xyloglucan and carbohydrate metabolic processes. Moreover, a synteny analysis unveiled an evolutionary relationship between the XTH genes in M. alba and those in three other species: A. thaliana, P. trichocarpa, and Zea mays. Expression profiles from RNA-Seq data displayed distinct expression patterns of XTH genes in M. alba leaf tissue during Mg treatments. Real-time quantitative PCR analysis confirmed the expression of the MaXTH genes in Mg stress response. Overall, this research enhances our understanding of the characteristics of MaXTH gene family members and lays the foundation for future functional genomic study in M. alba.
Collapse
Affiliation(s)
- Blessing Danso
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xin Jin
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Derek M. Ayittey
- School of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201308, China
| | - Frank Kwarteng Amoako
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany;
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
5
|
Kobayashi NI, Takagi H, Yang X, Nishizawa-Yokoi A, Segawa T, Hoshina T, Oonishi T, Suzuki H, Iwata R, Toki S, Nakanishi TM, Tanoi K. Mutations in RZF1, a zinc-finger protein, reduce magnesium uptake in roots and translocation to shoots in rice. PLANT PHYSIOLOGY 2023; 192:342-355. [PMID: 36718554 PMCID: PMC10152673 DOI: 10.1093/plphys/kiad051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 05/03/2023]
Abstract
Magnesium (Mg) homeostasis is critical for maintaining many biological processes, but little information is available to comprehend the molecular mechanisms regulating Mg concentration in rice (Oryza sativa). To make up for the lack of information, we aimed to identify mutants defective in Mg homeostasis through a forward genetic approach. As a result of the screening of 2,825 M2 seedlings mutated by ion-beam irradiation, we found a rice mutant that showed reduced Mg content in leaves and slightly increased Mg content in roots. Radiotracer 28Mg experiments showed that this mutant, named low-magnesium content 1 (LMGC1), has decreased Mg2+ influx in the root and Mg2+ translocation from root to shoot. Consequently, LMGC1 is sensitive to the low Mg condition and prone to develop chlorosis in the young mature leaf. The MutMap method identified a 7.4-kbp deletion in the LMGC1 genome leading to a loss of two genes. Genome editing using CRISPR-Cas9 further revealed that one of the two lost genes, a gene belonging to the RanBP2-type zinc-finger family that we named RanBP2-TYPE ZINC FINGER1 (OsRZF1), was the causal gene of the low Mg phenotype. OsRZF1 is a nuclear protein and may have a fundamental role in maintaining Mg homeostasis in rice plants.
Collapse
Affiliation(s)
- Natsuko I Kobayashi
- Graduate School of Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroki Takagi
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Xiaoyu Yang
- Graduate School of Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba 305-8604, Japan
| | - Tenta Segawa
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Tatsuaki Hoshina
- Graduate School of Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayuki Oonishi
- Center for Education and Research of Community Collaboration, Utsunomiya University, Utsunomiya 321-8505, Japan
| | - Hisashi Suzuki
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ren Iwata
- Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8572, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba 305-8604, Japan
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Yokohama, Kanagawa 236-0027, Japan
| | - Tomoko M Nakanishi
- Graduate School of Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo 142-8501, Japan
| | - Keitaro Tanoi
- Graduate School of Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Wang Y, Zhang X, Zhang W, Peng M, Tan G, Qaseem MF, Li H, Wu AM. Physiological and transcriptomic responses to magnesium deficiency in Neolamarckia Cadamba. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107645. [PMID: 36963300 DOI: 10.1016/j.plaphy.2023.107645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Magnesium (Mg2+) is a critical component of chlorophyll and enzymes involved in various physiological and biochemical processes essential for plant growth, biomass accumulation, and photosynthesis. Mg2+ deficiency (MgD) is common in hot and rainy subtropical areas due to its easy loss from soil. Neolamarckia cadamba, an important tropical tree in South Asia, faces severe effects of MgD, however, the responses of N. cadamba to MgD stress remain unclear. In here, effects of N. cadamba under MgD stress were investigated. The study revealed that MgD had lower plant biomass, fresh and dry weight, root length, root volume, and surface area compared to CK (normal Mg2+). As treatment time increased, the leaves began to yellow, and lesions appeared. Chlorophyll a, chlorophyll b, and total chlorophyll content, along with fluorescence-related parameters and leaf photosynthetic capacity, were significantly reduced in MgD stress compared to CK treatment. Transcriptome analysis showed that transporters as well as transcription factors (TFs) from MYC (v-myc avian myelocytomatosis viral oncogene homolog), MYB (v-myb avian myeloblastosis viral oncogene homolog), bHLH (basic helix-loop-helix) and WRKY families were upregulated in leaves at 10 d of MgD stress, indicating that magnesium signaling transduction might be activated to compensate MgD. In addition, genes including chlorophyll(ide) b reductase (NYC1/NOL) chlorophyll/bacteriochlorophyll synthase (G4) and 7-hydroxymethyl chlorophyll a reductase synthesizing (HCAR) chlorophyll a and chlorophyll b were down-regulated in leaves, while those scavenging reactive oxygen species (ROS) were mainly up-regulated at 10 d of MgD stress. These results shed light on underlying MgD in N. cadamba.
Collapse
Affiliation(s)
- Yueyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xintong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Mengxuan Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Guoqing Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Transcriptome Dynamics Underlying Magnesium Deficiency Stress in Three Founding Saccharum Species. Int J Mol Sci 2022; 23:ijms23179681. [PMID: 36077076 PMCID: PMC9456333 DOI: 10.3390/ijms23179681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Modern sugarcane cultivars were generated through interspecific crossing of the stress resistance Saccharum spontaneum and the high sugar content Saccharum officinarum which was domesticated from Saccharum robustum. Magnesium deficiency (MGD) is particularly prominent in tropical and subtropical regions where sugarcane is grown, but the response mechanism to MGD in sugarcane remains unknown. Physiological and transcriptomic analysis of the three founding Saccharum species under different magnesium (Mg) levels was performed. Our result showed that MGD decreased chlorophyll content and photosynthetic efficiency of three Saccharum species but led to increased starch in leaves and lignin content in roots of Saccharum robustum and Saccharum spontaneum. We identified 12,129, 11,306 and 12,178 differentially expressed genes (DEGs) of Saccharum officinarum, Saccharum robustum and Saccharum spontaneum, respectively. In Saccharum officinarum, MGD affected signal transduction by up-regulating the expression of xylan biosynthesis process-related genes. Saccharum robustum, responded to the MGD by regulating the expression of transcription and detoxification process-related genes. Saccharum spontaneum, avoids damage from MGD by regulating the expression of the signing transduction process and the transformation from growth and development to reproductive development. This novel repertoire of candidate genes related to MGD response in sugarcane will be helpful for engineering MGD tolerant varieties.
Collapse
|
8
|
Wang Q, Du W, Yu W, Zhang W, Huang F, Cheng H, Yu D. Genome-wide association analysis discovered new loci and candidate genes associated with low-phosphorus tolerance based on shoot mineral elements concentrations in soybean. Mol Genet Genomics 2022; 297:843-858. [PMID: 35441900 DOI: 10.1007/s00438-022-01895-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
Phosphorus (P) deficiency is one of the major limitations for soybean production. Moreover, it has been well reported P and other mineral elements function interdependently or antagonistically to control nutrients homeostasis in plants. Thus, it is urgently needed to understand the genetic mechanism of the accumulation of mineral elements in response to low-P stress. In this study, to identify single nucleotide polymorphisms (SNPs) and candidate genes controlling the accumulation of mineral elements suffering low-P stress in seedling stage of soybean plants, we measured concentrations of mineral elements, including P, Zn, Fe, Mn, Mg and Ca, in shoots of 211 soybean accessions under normal phosphorus (+P) and low phosphorus (-P) conditions in two hydroponic experiments. And genome-wide association study (GWAS) using high density NJAU 355K SoySNP array and concentrations of five of these mineral elements except P was performed. A total of 36 SNPs distributed on 13 chromosomes were identified to be significantly associated with low-P tolerance, and nine SNPs on chromosome 10 formed a SNP cluster. Meanwhile, the candidate gene GmFeB1 was found to serve as a negative regulator element involved in soybean P metabolism and the haplotype1 (Hap1) of GmFeB1 showed significantly higher shoot Fe concentration under -P condition than that of Hap2. In summary, we uncover 36 SNPs significantly associated with shoot mineral elements concentrations under different P conditions and a soybean low-P related gene GmFeB1, which will provide additional genetic information for soybean low-P tolerance and new gene resources for P-efficient soybean varieties breeding.
Collapse
Affiliation(s)
- Qing Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenkai Du
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenqing Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weihao Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Ochieno DMW. Soil Sterilization Eliminates Beneficial Microbes That Provide Natural Pest Suppression Ecosystem Services Against Radopholus similis and Fusarium Oxysporum V5w2 in the Endosphere and Rhizosphere of Tissue Culture Banana Plants. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.688194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endosphere and rhizosphere microbes offer plant growth promotion and pest suppression ecosystem services in banana-based agroecosystems. Interest has been growing towards the use of such beneficial microbes in protecting vulnerable tissue culture banana plants against pathogens such as Radopholus similis and Fusarium oxysporum. A screenhouse experiment with potted tissue culture banana plants was conducted using sterile and non-sterile soil to investigate the effect of soil biota on R. similis and F. oxysporum strain V5w2. Plants grown in non-sterile soil had lower damage and R. similis density in roots and rhizosphere, while most plant growth-related parameters including root freshweight, shoot freshweight, total freshweight, plant height, and leaf size were larger compared to those from sterile soil. Shoot dryweight and Mg content were higher in plants from sterile soil, while their leaves developed discolored margins. R. similis-inoculated plants in sterile soil were smaller, had more dead roots, higher nematode density, and produced fewer and smaller leaves, than those from non-sterile soil. For all plant growth-related parameters, nematode density and root damage, no differences were recorded between controls and F. oxysporum V5w2-inoculated plants; and no differences between those inoculated with R. similis only and the ones co-inoculated with the nematode and F. oxysporum V5w2. Banana roots inoculated with F. oxysporum V5w2 were lighter in color than those without the fungus. Independent or combined inoculation of banana plants with F. oxysporum V5w2 and R. similis resulted in lower optical density of root extracts. In vitro assays indicated the presence of Fusarium spp. and other root endophytic microbes that interacted antagonistically with the inoculated strain of F. oxysporum V5w2. It is concluded that, soil sterilization eliminates beneficial microbes that provide natural pest suppression ecosystem services against R. similis and F. oxysporum in the endosphere and rhizosphere of tissue culture banana plants. I recommend the integration of microbiome conservation into tissue culture technology through the proposed “Tissue Culture Microbiome Conservation Technology.”
Collapse
|
10
|
Li Y, Li Q, Beuchat G, Zeng H, Zhang C, Chen LQ. Combined analyses of translatome and transcriptome in Arabidopsis reveal new players responding to magnesium deficiency. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:2075-2092. [PMID: 34473403 DOI: 10.1111/jipb.13169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Translational control of gene expression, including recruitment of ribosomes to messenger RNA (mRNA), is particularly important during the response to stress. Purification of ribosome-associated mRNAs using translating ribosome affinity purification (TRAP) followed by RNA-sequencing facilitates the study of mRNAs undergoing active transcription and better proxies the translatome, or protein response, to stimuli. To identify plant responses to Magnesium (Mg) deficiency at the translational level, we combined transcriptome and translatome analyses. Excitingly, we found 26 previously unreported Mg-responsive genes that were only regulated at the translational level and not the transcriptional level, during the early response to Mg deficiency. In addition, mutants of the transcription factor ELONGATED HYPOCOTYL 5 (HY5), the H+ /CATION EXCHANGER 1 and 3 (CAX1 and CAX3), and UBIQUITIN 11 (UBQ11) exhibited early chlorosis phenotype under Mg deficiency, supporting their functional involvement in ion homeostasis. Overall, our study strongly supports that TRAP-seq combined with RNA-seq followed by phenotype screening could facilitate the identification of novel players during stress responses.
Collapse
Affiliation(s)
- Yaxin Li
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Qianqian Li
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Gabriel Beuchat
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Houqing Zeng
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Cankui Zhang
- Department of Agronomy and Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, 49707, USA
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
11
|
Li J, Li QH, Zhang XY, Zhang LY, Zhao PL, Wen T, Zhang JQ, Xu WL, Guo F, Zhao H, Wang Y, Wang P, Ni DJ, Wang ML. Exploring the Effects of Magnesium Deficiency on the Quality Constituents of Hydroponic-Cultivated Tea ( Camellia sinensis L.) Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14278-14286. [PMID: 34797979 DOI: 10.1021/acs.jafc.1c05141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnesium (Mg) plays important roles in photosynthesis, sucrose partitioning, and biomass allocation in plants. However, the specific mechanisms of tea plant response to Mg deficiency remain unclear. In this study, we investigated the effects of Mg deficiency on the quality constituents of tea leaves. Our results showed that the short-term (7 days) Mg deficiency partially elevated the concentrations of polyphenols, free amino acids, and caffeine but decreased the contents of chlorophyll and Mg. However, long-term (30 days) Mg-deficient tea displayed decreased contents of these constituents. Particularly, Mg deficiency increased the index of catechins' bitter taste and the ratio of total polyphenols to total free amino acids. Moreover, the transcription of key genes involved in the biosynthesis of flavonoid, caffeine, and theanine was differentially affected by Mg deficiency. Additionally, short-term Mg deficiency induced global transcriptome change in tea leaves, in which a total of 2522 differentially expressed genes were identified involved in secondary metabolism, amino acid metabolism, and chlorophyll metabolism. These results may help to elucidate why short-term Mg deficiency partially improves the quality constituents of tea, while long-term Mg-deficient tea may taste more bitter, more astringent, and less umami.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China (Ministry of Agriculture), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Qing-Hui Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China (Ministry of Agriculture), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xu-Yang Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lu-Yu Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Pei-Ling Zhao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ting Wen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jia-Qi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Wen-Luan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Fei Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Hua Zhao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yu Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Pu Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - De-Jiang Ni
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China (Ministry of Agriculture), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ming-Le Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China (Ministry of Agriculture), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
12
|
Yang Y, Li X, Kan B, He H, Li T, Ding Y, Du P, Lai W, Hu H, Huang J. Transcriptome analysis reveals MYB and WRKY transcription factors involved in banana (Musa paradisiaca AA) magnesium deficiency. PLANTA 2021; 254:115. [PMID: 34743252 DOI: 10.1007/s00425-021-03769-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The banana development was inhibited under the long-term magnesium deficiency (MD) stress, resulting in the leaf chlorosis. MYB108 and WRKY75 are involved in regulating the growth and development of banana leaves and roots under long-term MD. Magnesium deficiency (MD) causes plant growth inhibition, ageing acceleration, yield reduction and quality decline of banana (Musa paradisiaca AA), but the molecular regulatory mechanisms underlying the changes in response to long-term MD conditions remain unknown. In this study, a long-term MD experiment was performed with banana seedlings at the four-leaf stage. Compared to those in the control group, the growth of leaves and roots of seedlings in the long-term MD treatment experimental groups was inhibited, and the Mg content and chlorophyll contents were decreased. Leaves and roots of seedlings from the control and experimental groups were subsequently collected for RNA sequencing to identify the genes that respond to long-term MD. More than 50 million reads were identified from each sample, resulting in the detection of 3500 and 948 differentially expressed genes (DEGs) in the leaves and roots, respectively. MYB and WRKY transcription factors (TFs) involved in plant stress responses were selected for further analysis, and 102 MYB and 149 WRKY TFs were differentially expressed. Furthermore, two highly differentially expressed candidate genes, MYB108 and WRKY75, were functionally analyzed using Arabidopsis mutants grown under long-term MD conditions. The results showed that the density of root hairs on the wild type (WT) was than that on the myb108 and wrky75 mutants under MD, implying that the mutants were more sensitive to MD than the WT. This research broadens our understanding the underlying molecular mechanism of banana seedlings adapted to the long-term MD condition.
Collapse
Affiliation(s)
- Yong Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Xinping Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Baolin Kan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Hongsu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Ting Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yuanhao Ding
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Pengmeng Du
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Wenjie Lai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Haiyan Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China.
| | - Jiaquan Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China.
| |
Collapse
|
13
|
Shinozaki D, Tanoi K, Yoshimoto K. Optimal Distribution of Iron to Sink Organs via Autophagy Is Important for Tolerance to Excess Zinc in Arabidopsis. PLANT & CELL PHYSIOLOGY 2021; 62:515-527. [PMID: 33528512 DOI: 10.1093/pcp/pcab017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Zinc (Zn) is nutritionally an essential metal element, but excess Zn in the environment is toxic to plants. Autophagy is a major pathway responsible for intracellular degradation. Here, we demonstrate the important role of autophagy in adaptation to excess Zn stress. We found that autophagy-defective Arabidopsis thaliana (atg2 and atg5) exhibited marked excess Zn-induced chlorosis and growth defects relative to wild-type (WT). Imaging and biochemical analyses revealed that autophagic activity was elevated under excess Zn. Interestingly, the excess Zn symptoms of atg5 were alleviated by supplementation of high levels of iron (Fe) to the media. Under excess Zn, in atg5, Fe starvation was especially severe in juvenile true leaves. Consistent with this, accumulation levels of Fe3+ near the shoot apical meristem remarkably reduced in atg5. Furthermore, excision of cotyledons induced severe excess Zn symptoms in WT, similar to those observed in atg5.Our data suggest that Fe3+ supplied from source leaves (cotyledons) via autophagy is distributed to sink leaves (true leaves) to promote healthy growth under excess Zn, revealing a new dimension, the importance of heavy-metal stress responses by the intracellular recycling.
Collapse
Affiliation(s)
- Daiki Shinozaki
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
- Life Sciences Program, Graduate School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Kohki Yoshimoto
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
- Life Sciences Program, Graduate School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| |
Collapse
|