1
|
Burkhardt J, Zinsmeister D, Roth-Nebelsick A, Hüging H, Pariyar S. Ambient aerosols increase stomatal transpiration and conductance of hydroponic sunflowers by extending the hydraulic system to the leaf surface. FRONTIERS IN PLANT SCIENCE 2023; 14:1275358. [PMID: 38098798 PMCID: PMC10720890 DOI: 10.3389/fpls.2023.1275358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023]
Abstract
Introduction Many atmospheric aerosols are hygroscopic and play an important role in cloud formation. Similarly, aerosols become sites of micro-condensation when they deposit to the upper and lower surfaces of leaves. Deposited salts, in particular can trigger condensation at humidities considerably below atmospheric saturation, according to their hygroscopicity and the relative humidity within the leaf boundary layer. Salt induced water potential gradients and the resulting dynamics of concentrated salt solutions can be expected to affect plant water relations. Methods Hydroponic sunflowers were grown in filtered (FA) and unfiltered, ambient air (AA). Sap flow was measured for 18 days and several indicators of incipient drought stress were studied. Results At 2% difference in mean vapor pressure deficit (D), AA sunflowers had 49% higher mean transpiration rates, lower osmotic potential, higher proline concentrations, and different tracer transport patterns in the leaf compared to FA sunflowers. Aerosols increased plant conductance particularly at low D. Discussion The proposed mechanism is that thin aqueous films of salt solutions from deliquescent deposited aerosols enter into stomata and cause an extension of the hydraulic system. This hydraulic connection leads - parallel to stomatal water vapor transpiration - to wick-like stomatal loss of liquid water and to a higher impact of D on plant water loss. Due to ample water supply by hydroponic cultivation, AA plants thrived as well as FA plants, but under more challenging conditions, aerosol deposits may make plants more susceptible to drought stress.
Collapse
Affiliation(s)
- Juergen Burkhardt
- Institute of Crop Science and Resource Conservation, Plant Nutrition Group, University of Bonn, Bonn, Germany
| | - Daniel Zinsmeister
- Institute of Crop Science and Resource Conservation, Plant Nutrition Group, University of Bonn, Bonn, Germany
| | - Anita Roth-Nebelsick
- Department Palaeontology, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Hubert Hüging
- Institute of Crop Science and Resource Conservation, Crop Science Group, University of Bonn, Bonn, Germany
| | - Shyam Pariyar
- Institute of Crop Science and Resource Conservation, Plant Nutrition Group, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Vega C, Chi CJE, Fernández V, Burkhardt J. Nocturnal Transpiration May Be Associated with Foliar Nutrient Uptake. PLANTS (BASEL, SWITZERLAND) 2023; 12:531. [PMID: 36771616 PMCID: PMC9919148 DOI: 10.3390/plants12030531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Aerosols can contribute to plant nutrition via foliar uptake. The conditions for this are best at night because the humidity is high and hygroscopic, saline deposits can deliquesce as a result. Still, stomata tend to be closed at night to avoid unproductive water loss. However, if needed, nutrients are on the leaf surface, and plants could benefit from nocturnal stomatal opening because it further increases humidity in the leaf boundary layer and allows for stomatal nutrient uptake. We tested this hypothesis on P-deficient soil by comparing the influence of ambient aerosols and additional foliar P application on nocturnal transpiration. We measured various related leaf parameters, such as the foliar water loss, minimum leaf conductance (gmin), turgor loss point, carbon isotope ratio, contact angle, specific leaf area (SLA), tissue element concentration, and stomatal and cuticular characteristics. For untreated leaves grown in filtered, aerosol-free air (FA), nocturnal transpiration consistently decreased overnight, which was not observed for leaves grown in unfiltered ambient air (AA). Foliar application of a soluble P salt increased nocturnal transpiration for AA and FA leaves. Crusts on stomatal rims were shown by scanning electron microscopy, supporting the idea of stomatal uptake of deliquescent salts. Turgor loss point and leaf moisture content indicated a higher accumulation of solutes, due to foliar uptake by AA plants than FA plants. The hypothesis that deliquescent leaf surface salts may play a role in triggering nocturnal transpiration was supported by the results. Still, further experiments are required to characterize this phenomenon better.
Collapse
Affiliation(s)
- Clara Vega
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Chia-Ju Ellen Chi
- Plant Nutrition Group, Institute of Crop Science and Resource Conservation, University of Bonn, Karlrobert-Kreiten-Strasse 13, D-53115 Bonn, Germany
| | - Victoria Fernández
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Juergen Burkhardt
- Plant Nutrition Group, Institute of Crop Science and Resource Conservation, University of Bonn, Karlrobert-Kreiten-Strasse 13, D-53115 Bonn, Germany
| |
Collapse
|
3
|
Husted S, Minutello F, Pinna A, Tougaard SL, Møs P, Kopittke PM. What is missing to advance foliar fertilization using nanotechnology? TRENDS IN PLANT SCIENCE 2023; 28:90-105. [PMID: 36153275 DOI: 10.1016/j.tplants.2022.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
An urgent challenge within agriculture is to improve fertilizer efficiency in order to reduce the environmental footprint associated with an increased production of crops on existing farmland. Standard soil fertilization strategies are often not very efficient due to immobilization in the soil and losses of nutrients by leaching or volatilization. Foliar fertilization offers an attractive supplementary strategy as it bypasses the adverse soil processes, but implementation is often hampered by a poor penetration through leaf barriers, leaf damage, and a limited ability of nutrients to translocate. Recent advances within bionanotechnology offer a range of emerging possibilities to overcome these challenges. Here we review how nanoparticles can be tailored with smart properties to interact with plant tissue for a more efficient delivery of nutrients.
Collapse
Affiliation(s)
- Søren Husted
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark.
| | - Francesco Minutello
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Andrea Pinna
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Stine Le Tougaard
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Pauline Møs
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia 4072, Queensland, Australia
| |
Collapse
|
4
|
Tredenick EC, Stuart-Williams H, Enge TG. Materials on Plant Leaf Surfaces Are Deliquescent in a Variety of Environments. FRONTIERS IN PLANT SCIENCE 2022; 13:722710. [PMID: 35903227 PMCID: PMC9315345 DOI: 10.3389/fpls.2022.722710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Materials on plant leaf surfaces that attract water impact penetration of foliar-applied agrochemicals, foliar water uptake, gas exchange, and stomatal density. Few studies are available on the nature of these substances, and we quantify the hygroscopicity of these materials. Water vapor sorption experiments on twelve leaf washes of sample leaves were conducted and analyzed with inductively coupled plasma-optical emission spectroscopy (ICP-OES) and X-ray diffraction. All leaf surface materials studied were hygroscopic. Oils were found on the surface of the Eucalyptus studied. For mangroves that excrete salt to the leaf surfaces, significant sorption occurred at high humidity of a total of 316 mg (~0.3 ml) over 6-10 leaves and fitted a Guggenheim, Anderson, and de Böer sorption isotherm. Materials on the plant leaf surface can deliquesce and form an aqueous solution in a variety of environments where plants grow, including glasshouses and by the ocean, which is an important factor when considering plant-atmosphere relations.
Collapse
Affiliation(s)
- E. C. Tredenick
- Division of Plant Sciences, ARC Centre of Excellence in Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - H. Stuart-Williams
- Division of Plant Sciences, ARC Centre of Excellence in Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - T. G. Enge
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
5
|
Chi CJE, Zinsmeister D, Lai IL, Chang SC, Kuo YL, Burkhardt J. Aerosol Impacts on Water Relations of Camphor ( Cinnamomum camphora). FRONTIERS IN PLANT SCIENCE 2022; 13:892096. [PMID: 35795349 PMCID: PMC9251497 DOI: 10.3389/fpls.2022.892096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Major parts of anthropogenic and natural aerosols are hygroscopic and deliquesce at high humidity, particularly when depositing to leaf surfaces close to transpiring stomata. Deliquescence and subsequent salt creep may establish thin, extraordinary pathways into the stomata, which foster stomatal uptake of nutrients and water but may also cause stomatal liquid water loss by wicking. Such additional water loss is not accompanied by a wider stomatal aperture with a larger CO2 influx and hypothetically reduces water use efficiency (WUE). Here, the possible direct impacts of aerosols on physical and physiological parameters of camphor (Cinnamomum camphora) were studied (i) in a greenhouse experiment using aerosol exclusion and (ii) in a field study in Taiwan, comparing trees at two sites with different aerosol regimes. Scanning electron microscopy (SEM) images showed that leaves grown under aerosol exclusion in filtered air (FA) were lacking the amorphous, flat areas that were abundant on leaves grown in ambient air (AA), suggesting salt crusts formed from deliquescent aerosols. Increasing vapor pressure deficit (VPD) resulted in half the Ball-Berry slope and double WUE for AA compared to FA leaves. This apparent contradiction to the wicking hypothesis may be due to the independent, overcompensating effect of stomatal closure in response to VPD, which affects AA more than FA stomata. Compared to leaves in a more polluted region in the Taiwanese Southwest, NaCl aerosols dominated the leaf surface conditions on mature camphor trees in Eastern Taiwan, while the considerably lower contact angles and the 2.5 times higher minimum epidermal conductances might have come from organic surfactants. Interpretations of SEM images from leaf surface microstructures should consider amorphous areas as possible indicators of aerosol deposition and other hygroscopic material. The amount and type of the material determine the resulting impacts on plant water relations, together with the surrounding atmosphere and ecophysiological traits.
Collapse
Affiliation(s)
- Chia-Ju Ellen Chi
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Daniel Zinsmeister
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - I-Ling Lai
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chieh Chang
- Department of Natural Resources and Environmental Studies, Center for Interdisciplinary Research on Ecology and Sustainability, National Dong Hwa University, Hualien, Taiwan
| | - Yau-Lun Kuo
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Jürgen Burkhardt
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| |
Collapse
|