1
|
Gao P, Wang K, Qi C, Chen K, Xiang W, Zhang Y, Zhang J, Shu C. A New Method for Discovering Plant Biostimulants. PLANTS (BASEL, SWITZERLAND) 2023; 13:56. [PMID: 38202363 PMCID: PMC10780382 DOI: 10.3390/plants13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Structurally well-defined compounds have advantages for quality control in plant biostimulant production and application processes. Humic acid (HA) is a biostimulant that significantly affects plant growth, and soil-dwelling Protaetia brevitarsis larva (PBLs) can rapidly convert agricultural waste into HA. In this study, we use PBLs as a model to investigate HA formation and screen for structurally well-defined HA-related plant biostimulant compounds. Dephasing magic angle spinning nuclear magnetic resonance (13C DD-MAS NMR) analysis indicated HA structural changes during PBL digestion; metabolic profiling detected seven HA-related aromatic ring-containing compounds. A total of six compounds that significantly stimulate plant growth were identified through plant experiments, and all six compounds demonstrate the ability to enhance seed germination. It is noteworthy that piperic acid exhibits a remarkable promotion of root growth in plants, a finding reported for the first time in this study. Thus, this study not only provides insights into the insect-mediated transformation of HA but also illustrates a new method for discovering structurally well-defined plant biostimulant compounds.
Collapse
Affiliation(s)
- Peiwen Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (P.G.); (C.Q.); (K.C.); (Y.Z.); (J.Z.)
| | - Kui Wang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China;
| | - Chang Qi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (P.G.); (C.Q.); (K.C.); (Y.Z.); (J.Z.)
| | - Keming Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (P.G.); (C.Q.); (K.C.); (Y.Z.); (J.Z.)
| | - Wensheng Xiang
- College of Life Science, Northeast Agricultural University, HarBin 150030, China;
| | - Yue Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (P.G.); (C.Q.); (K.C.); (Y.Z.); (J.Z.)
- Hebei Key Laboratory of Soil Entomology, Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (P.G.); (C.Q.); (K.C.); (Y.Z.); (J.Z.)
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (P.G.); (C.Q.); (K.C.); (Y.Z.); (J.Z.)
| |
Collapse
|
2
|
Santoro V, Della Lucia MC, Francioso O, Stevanato P, Bertoldo G, Borella M, Ferrari E, Zaccone C, Schiavon M, Pizzeghello D, Nardi S. Phosphorus Acquisition Efficiency and Transcriptomic Changes in Maize Plants Treated with Two Lignohumates. PLANTS (BASEL, SWITZERLAND) 2023; 12:3291. [PMID: 37765455 PMCID: PMC10535022 DOI: 10.3390/plants12183291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Lignohumates are increasing in popularity in agriculture, but their chemistry and effects on plants vary based on the source and processing. The present study evaluated the ability of two humates (H1 and H2) to boost maize plant performance under different phosphorus (P) availability (25 and 250 μM) conditions in hydroponics, while understanding the underlying mechanisms. Humates differed in chemical composition, as revealed via elemental analysis, phenol and phytohormone content, and thermal and spectroscopic analyses. H1 outperformed H2 in triggering plant responses to low phosphorus by enhancing phosphatase and phytase enzymes, P acquisition efficiency, and biomass production. It contained higher levels of endogenous auxins, cytokinins, and abscisic acid, likely acting together to stimulate plant growth. H1 also improved the plant antioxidant capacity, thus potentially increasing plant resilience to external stresses. Both humates increased the nitrogen (N) content and acted as biostimulants for P and N acquisition. Consistent with the physiological and biochemical data, H1 upregulated genes involved in growth, hormone signaling and defense in all plants, and in P recycling particularly under low-P conditions. In conclusion, H1 showed promising potential for effective plant growth and nutrient utilization, especially in low-P plants, involving hormonal modulation, antioxidant enhancement, the stimulation of P uptake and P-recycling mechanisms.
Collapse
Affiliation(s)
- Veronica Santoro
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Maria Cristina Della Lucia
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (M.C.D.L.); (P.S.); (G.B.); (M.B.); (D.P.); (S.N.)
| | - Ornella Francioso
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 40, 40127 Bologna, Italy;
| | - Piergiorgio Stevanato
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (M.C.D.L.); (P.S.); (G.B.); (M.B.); (D.P.); (S.N.)
| | - Giovanni Bertoldo
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (M.C.D.L.); (P.S.); (G.B.); (M.B.); (D.P.); (S.N.)
| | - Matteo Borella
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (M.C.D.L.); (P.S.); (G.B.); (M.B.); (D.P.); (S.N.)
| | - Erika Ferrari
- Dipartimento di Scienze Chimiche e Geologiche, University of Modena and Reggio Emilia, Via Università 4, 41121 Modena, Italy;
| | - Claudio Zaccone
- Dipartimento di Biotecnologie, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Michela Schiavon
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Diego Pizzeghello
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (M.C.D.L.); (P.S.); (G.B.); (M.B.); (D.P.); (S.N.)
| | - Serenella Nardi
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (M.C.D.L.); (P.S.); (G.B.); (M.B.); (D.P.); (S.N.)
| |
Collapse
|
3
|
Wang Y, Lu Y, Wang L, Song G, Ni L, Xu M, Nie C, Li B, Bai Y. Analysis of the molecular composition of humic substances and their effects on physiological metabolism in maize based on untargeted metabolomics. FRONTIERS IN PLANT SCIENCE 2023; 14:1122621. [PMID: 37284724 PMCID: PMC10239833 DOI: 10.3389/fpls.2023.1122621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/18/2023] [Indexed: 06/08/2023]
Abstract
Introduction Humic substances (HSs), components of plant biostimulants, are known to influence plant physiological processes, nutrient uptake and plant growth, thereby increasing crop yield. However, few studies have focused on the impact of HS on overall plant metabolism, and there is still debate over the connection between HS' structural characteristics and their stimulatory actions. Methods In this study, two different HSs (AHA, Aojia humic acid and SHA, Shandong humic acid) screened in a previous experiment were chosen for foliar spraying, and plant samples were collected on the tenth day after spraying (62 days after germination) to investigate the effects of different HSs on photosynthesis, dry matter accumulation, carbon and nitrogen metabolism and overall metabolism in maize leaf. Results and discussion The results showed different molecular compositions for AHA and SHA and a total of 510 small molecules with significant differences were screened using an ESI-OPLC-MS techno. AHA and SHA exerted different effects on maize growth, with the AHA inducing more effective stimulation than the SHA doing. Untargeted metabolomic analysis revealed that the phospholipid components of maize leaves treated by SHA generally increased significantly than that in the AHA and control treatments. Additionally, both HS-treated maize leaves exhibited different levels of accumulation of trans-zeatin, but SHA treatment significantly decreased the accumulation of zeatin riboside. Compared to CK treatment, AHA treatment resulted in the reorganization of four metabolic pathways: starch and sucrose metabolism, TCA cycle, stilbenes, diarylheptanes, and curcumin biosynthesis, and ABC transport, SHA treatment modified starch and sucrose metabolism and unsaturated fatty acid biosynthesis. These results demonstrate that HSs exert their function through a multifaceted mechanism of action, partially connected to their hormone-like activity but also involving hormoneindependent signaling pathways.
Collapse
Affiliation(s)
- Yuhong Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Yanli Lu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guipei Song
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Ni
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengze Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caie Nie
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baoguo Li
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Youlu Bai
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Jing J, Zhang S, Yuan L, Li Y, Zhang Y, Wen Y, Zhao B. Humic acid complex formation with urea alters its structure and enhances biomass production in hydroponic maize. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3636-3643. [PMID: 34888881 DOI: 10.1002/jsfa.11710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Humic acid (HA)-enhanced urea (HAU) is the top-selling efficiency-enhanced urea in China. Comprehensive investigation into the structure and efficacy of HA complex formation with urea (HACU) - the main reaction product during HAU's production - is required to clarify the reaction mechanism between HA and urea, and to provide guidance for the development of high-efficiency HAU. RESULTS HACU showed discrepant structural and compositional features from raw HA. Nitrogen (N) content in HACU was 7.3 times greater than that of HA. Several high-resolution analytical methods showed a sharp increase of ammonia in the gaseous product during HACU pyrolysis, suggesting that urea contributed N to HACU. HACU was characterized with significantly fewer carboxyl groups than in raw HA, implying that the carboxyl group was the main group in HA to participate in the reaction between HA and urea. The presence of amide-N in HACU verified the structure of the reaction product. Furthermore, both HACU and HA could enhance the biomass in hydroponically grown maize seedlings, but the highest stimulation for HACU came about when its carbon concentrations were 50-100 mg L-1 , higher than the optimal carbon concentration for HA (25 mg L-1 ), attributed to the lower carboxyl group content for HACU to some extent. CONCLUSION During HAU's production, reaction with N derived from urea to form amide-N decreased the carboxyl groups in HA, leading to higher concentrations for HACU required to achieve the similar bioefficacy of HA. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianyuan Jing
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuiqin Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Yuan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanting Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingqiang Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanchen Wen
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingqiang Zhao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Jing J, Zhang S, Yuan L, Li Y, Chen C, Zhao B. Humic Acid Modified by Being Incorporated Into Phosphate Fertilizer Increases Its Potency in Stimulating Maize Growth and Nutrient Absorption. FRONTIERS IN PLANT SCIENCE 2022; 13:885156. [PMID: 35665178 PMCID: PMC9161291 DOI: 10.3389/fpls.2022.885156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Humic acid-enhanced phosphate fertilizer (HAP) is widely applied in Chinese agriculture due to its high efficiency. Although the structural composition and physicochemical properties of humic acid (HA) are significantly altered during HAP production, a clear understanding of the mechanisms underlying the biological effects of HA extracted from HAP fertilizer (PHA) on plant growth is still lacking. In the current study, we extracted PHA from HAP and assessed its effects on the dry biomass, phosphorus (P) and nitrogen (N) uptake, and P absorption rate of maize seedlings when supplied at different concentrations (2.5, 5, 10, and 25 mg C L-1) in the hydroponic culture. The root vigor, root plasma membrane H+-ATPase activity, and root nitrate reductase activity were also determined as the representative indicators of the root capacity for nutrient absorption, and used to clarify the mechanism by which PHA affects the maize growth and nutrient absorption. The results showed that the dry biomass, phosphorus uptake, nitrogen uptake, and average phosphorus absorption rates were significantly higher by 14.7-27.9%, 9.6-35.1%, 17.9-22.4%, and 22.1-31.0%, respectively, in plants treated with 2.5-5 mg C L-1 PHA compared to untreated controls. Application of 10-25 mg C L-1 raw HA resulted in similar stimulatory effects on plant growth and nutrient absorption. However, higher levels of PHA (10-25 mg C L-1) negatively impacted these indicators of plant growth. Furthermore, low PHA or high raw HA concentrations similarly improved root vigor and root plasma membrane H+-ATPase and nitrate reductase (NR) activities. These results indicate that lower concentrations of PHA can stimulate maize seedling growth and nutrient absorption to an extent that is comparable to the effect of higher concentrations of raw HA. Thus, the proportion of HA incorporated into HAP could be lower than the theoretical amount estimated through assays evaluating the biological effects of raw HA.
Collapse
Affiliation(s)
- Jianyuan Jing
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuiqin Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Yuan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanting Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengrong Chen
- School of Environment and Science, Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Bingqiang Zhao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Xuan H, Gao P, Du B, Geng L, Wang K, Huang K, Zhang J, Huang T, Shu C. Characterization of Microorganisms from Protaetia brevitarsis Larva Frass. Microorganisms 2022; 10:microorganisms10020311. [PMID: 35208766 PMCID: PMC8880812 DOI: 10.3390/microorganisms10020311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022] Open
Abstract
Decomposers play an important role in the biogeochemical cycle. Protaetia brevitarsis larvae (PBLs) can transform wastes into frass rich in humic acid (HA) and microorganisms, which may increase the disease resistance of plants and promote plant growth. Beyond HA, the microorganisms may also contribute to the biostimulant activity. To address this hypothesis, we investigated the potential microbial community in the PBL frass samples and elucidated their functions of disease resistance and plant growth promotion. High-throughput sequencing analysis of four PBL-relevant samples showed that their frass can influence the microbial community of the surrounding environment. Further analysis showed that there were many microorganisms beneficial to agriculture, such as Bacillus. Therefore, culturable Bacillus microbes were isolated from frass, and 16S rDNA gene analysis showed that Bacillus subtilis was the dominant species. In addition, some Bacillus microorganisms isolated from the PBL frass had antibacterial activities against pathogenic fungi. The plant growth promotion pot experiment also proved that some strains promote plant growth. In conclusion, this study demonstrated that the microorganisms in the PBL frass are conducive to colonizing the surrounding organic matrix, which will help beneficial microbes to increase the disease resistance of plants and promote plant growth.
Collapse
Affiliation(s)
- Huina Xuan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (P.G.); (B.D.); (L.G.); (K.W.); (J.Z.)
| | - Peiwen Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (P.G.); (B.D.); (L.G.); (K.W.); (J.Z.)
| | - Baohai Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (P.G.); (B.D.); (L.G.); (K.W.); (J.Z.)
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (P.G.); (B.D.); (L.G.); (K.W.); (J.Z.)
| | - Kui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (P.G.); (B.D.); (L.G.); (K.W.); (J.Z.)
| | - Kun Huang
- Genliduo Bio-Tech Corporation Ltd., Xingtai 054000, China;
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (P.G.); (B.D.); (L.G.); (K.W.); (J.Z.)
| | - Tianpei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Correspondence: (T.H.); (C.S.)
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (P.G.); (B.D.); (L.G.); (K.W.); (J.Z.)
- Correspondence: (T.H.); (C.S.)
| |
Collapse
|
7
|
Khan ST, Adil SF, Shaik MR, Alkhathlan HZ, Khan M, Khan M. Engineered Nanomaterials in Soil: Their Impact on Soil Microbiome and Plant Health. PLANTS (BASEL, SWITZERLAND) 2021; 11:109. [PMID: 35009112 PMCID: PMC8747355 DOI: 10.3390/plants11010109] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 05/27/2023]
Abstract
A staggering number of nanomaterials-based products are being engineered and produced commercially. Many of these engineered nanomaterials (ENMs) are finally disposed into the soil through various routes in enormous quantities. Nanomaterials are also being specially tailored for their use in agriculture as nano-fertilizers, nano-pesticides, and nano-based biosensors, which is leading to their accumulation in the soil. The presence of ENMs considerably affects the soil microbiome, including the abundance and diversity of microbes. In addition, they also influence crucial microbial processes, such as nitrogen fixation, mineralization, and plant growth promoting activities. ENMs conduct in soil is typically dependent on various properties of ENMs and soil. Among nanoparticles, silver and zinc oxide have been extensively prepared and studied owing to their excellent industrial properties and well-known antimicrobial activities. Therefore, at this stage, it is imperative to understand how these ENMs influence the soil microbiome and related processes. These investigations will provide necessary information to regulate the applications of ENMs for sustainable agriculture and may help in increasing agrarian production. Therefore, this review discusses several such issues.
Collapse
Affiliation(s)
- Shams Tabrez Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 2002002, UP, India
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| | - Hamad Z. Alkhathlan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| | - Merajuddin Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| |
Collapse
|
8
|
Czuba K, Bastrzyk A, Rogowska A, Janiak K, Pacyna K, Kossińska N, Kita M, Chrobot P, Podstawczyk D. Towards the circular economy - A pilot-scale membrane technology for the recovery of water and nutrients from secondary effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148266. [PMID: 34119800 DOI: 10.1016/j.scitotenv.2021.148266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
The concept of water reuse was proposed more than two decades ago in regions that suffered from water scarcity or relied on unpredictable water supplies. Since then, climate change, a rapidly growing global urban population, and environmental pollution have impacted sustainable water resources, driving a rise in demand for efficient wastewater reclamation technologies. According to the new Circular Economy Action Plan established by the EU, most activities that are undertaken as part of the wastewater treatment process should primarily concern the search for new technologies that use wastewater as a source of water and nutrients. This article proposes a new approach of secondary effluent (SE) management to recover the valuable components of wastewater for a variety of purposes, beginning with the water itself and followed by nutrients. With this objective in mind, we reclaimed SE in an integrated 3-stage pilot-scale membrane process (micro/ultrafiltration, nanofiltration and reverse osmosis). The effect of the process inlet pressure and flow configuration (cross-flow and dead-end filtration), as well as the type of membrane, on the efficiency of the process and water composition was investigated. In this study, microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) are not only pre-treatment processes reverse osmosis (RO) but also produce water for various purposes. This technology allowed the production of water for several types of applications. These uses include (a) industrial processes as a cooling medium, (b) urban non-potable applications (e.g., irrigation with reclaimed water and microelements), (c) potable water supplies, and (d) groundwater remediation. The classification of proper use was made based on standards, regulations, and the available literature. The conducted research demonstrated the versatility of the proposed technology with regard to water reclamation for various non-exclusive applications. Additionally, the cost-effectiveness of the implementation of the presented 3-stage-membrane technology was calculated.
Collapse
Affiliation(s)
- Krystian Czuba
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Anna Bastrzyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Aleksandra Rogowska
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland; Department of Water and Wastewater Treatment Technology, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Kamil Janiak
- Department of Water and Wastewater Treatment Technology, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland; Center of New Technologies, Municipal Water and Sewage Company, Na Grobli 19, 50-421 Wroclaw, Poland
| | - Kornelia Pacyna
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Nina Kossińska
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Michał Kita
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Przemysław Chrobot
- Center of New Technologies, Municipal Water and Sewage Company, Na Grobli 19, 50-421 Wroclaw, Poland
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland.
| |
Collapse
|
9
|
Monda H, McKenna AM, Fountain R, Lamar RT. Bioactivity of Humic Acids Extracted From Shale Ore: Molecular Characterization and Structure-Activity Relationship With Tomato Plant Yield Under Nutritional Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:660224. [PMID: 34122481 PMCID: PMC8195337 DOI: 10.3389/fpls.2021.660224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The increasing demands for biostimulants in the agricultural market over the last years have posed the problem of regulating this product category by requiring the industry to make available the information about efficacy and safety, including the explanation of mode of action and the definition of bioactive constituents. In the present study, we tested the biostimulant proprieties of a sedimentary shale ore-extracted humic acid (HA) on Micro Tom tomato plants under increasing nutritional stress and investigated the correlation with the chemical features of HA by means of ultra-high resolution FT-ICR MS, FT-ATR, and 13C-NMR. Humic acid application proved effective in alleviating the nutritional stress by improving nutrient use efficiency, with results comparable to the control treatment supplied with higher NPK nutrition. Increased yield (up to +19%) and fruit quality (in the range +10-24%), higher ascorbic acid content and a better root growth were the main parameters affected by HA application. Molecular-level characterization identified the possible chemical drivers of bioactivity, and included flavonoids, quinones, and alkaloids among the most represented molecules, some of which exhibiting antioxidant, pro-oxidant, and antimicrobial activity. The redox effect was discussed as a determinant of the delicate homeostasis balance, capable of triggering plant defense response and eventually inducing a protective priming effect on the plants.
Collapse
Affiliation(s)
- Hiarhi Monda
- Humic R&D Lab, Bio Huma Netics, Inc., Gilbert, AZ, United States
| | - Amy M. McKenna
- National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility, Tallahassee, FL, United States
| | - Ryan Fountain
- Humic R&D Lab, Bio Huma Netics, Inc., Gilbert, AZ, United States
| | - Richard T. Lamar
- Humic R&D Lab, Bio Huma Netics, Inc., Gilbert, AZ, United States
| |
Collapse
|
10
|
Shahrajabian MH, Chaski C, Polyzos N, Petropoulos SA. Biostimulants Application: A Low Input Cropping Management Tool for Sustainable Farming of Vegetables. Biomolecules 2021; 11:biom11050698. [PMID: 34067181 PMCID: PMC8150747 DOI: 10.3390/biom11050698] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Biostimulants, are a diverse class of compounds including substances or microorganism which have positive impacts on plant growth, yield and chemical composition as well as boosting effects to biotic and abiotic stress tolerance. The major plant biostimulants are hydrolysates of plant or animal protein and other compounds that contain nitrogen, humic substances, extracts of seaweeds, biopolymers, compounds of microbial origin, phosphite, and silicon, among others. The mechanisms involved in the protective effects of biostimulants are varied depending on the compound and/or crop and mostly related with improved physiological processes and plant morphology aspects such as the enhanced root formation and elongation, increased nutrient uptake, improvement in seed germination rates and better crop establishment, increased cation exchange, decreased leaching, detoxification of heavy metals, mechanisms involved in stomatal conductance and plant transpiration or the stimulation of plant immune systems against stressors. The aim of this review was to provide an overview of the application of plant biostimulants on different crops within the framework of sustainable crop management, aiming to gather critical information regarding their positive effects on plant growth and yield, as well as on the quality of the final product. Moreover, the main limitations of such practice as well as the future prospects of biostimulants research will be presented.
Collapse
|
11
|
Nardi S, Schiavon M, Francioso O. Chemical Structure and Biological Activity of Humic Substances Define Their Role as Plant Growth Promoters. Molecules 2021; 26:molecules26082256. [PMID: 33924700 PMCID: PMC8070081 DOI: 10.3390/molecules26082256] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Humic substances (HS) are dominant components of soil organic matter and are recognized as natural, effective growth promoters to be used in sustainable agriculture. In recent years, many efforts have been made to get insights on the relationship between HS chemical structure and their biological activity in plants using combinatory approaches. Relevant results highlight the existence of key functional groups in HS that might trigger positive local and systemic physiological responses via a complex network of hormone-like signaling pathways. The biological activity of HS finely relies on their dosage, origin, molecular size, degree of hydrophobicity and aromaticity, and spatial distribution of hydrophilic and hydrophobic domains. The molecular size of HS also impacts their mode of action in plants, as low molecular size HS can enter the root cells and directly elicit intracellular signals, while high molecular size HS bind to external cell receptors to induce molecular responses. Main targets of HS in plants are nutrient transporters, plasma membrane H+-ATPases, hormone routes, genes/enzymes involved in nitrogen assimilation, cell division, and development. This review aims to give a detailed survey of the mechanisms associated to the growth regulatory functions of HS in view of their use in sustainable technologies.
Collapse
Affiliation(s)
- Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, Università degli Studi di Padova, V.le dell’Università 16, Legnaro, 35020 Padova, Italy;
| | - Michela Schiavon
- Department of di of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2 (già Via Leonardo da Vinci, 44), 10095 Grugliasco, Italy
- Correspondence:
| | - Ornella Francioso
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy;
| |
Collapse
|
12
|
Effectiveness of Humic Substances and Phenolic Compounds in Regulating Plant-Biological Functionality. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10101553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significant benefit of soil organic matter (SOM) to crop productivity is scientifically well documented. The main constituents and active fractions of SOM are humic substances (HS) and phenolic compounds. Since both these two components strongly impact plant–soil relationship, it is importantly from an ecological point of view to discriminate their biological effects and relating them to their composition. In this study we compared the biological effects of HS, and the soil water soluble phenols (SWSP) on growth, antioxidant activities, carbohydrates, proteins, phenols, and vitamins of Pinus laricio callus. Each extract was assessed for the content of low molecular weight organic acids, soluble carbohydrates, fatty acids, and phenolic acids. Moreover, Fourier transform infrared (FT-IR) and surface-enhanced Raman scattering (SERS) spectroscopies were applied to study their molecular structure. The results showed that HS produced better callus growth compared to the control and SWSP. Carbohydrates decreased in presence of HS while proteins, vitamin C and E increased. In contrast, in callus treated with SWSP the amount of glucose and fructose increased as well as all the antioxidant activities. The data evidenced that HS rich in tartaric and fatty acids had beneficial effects on callus growth contrary to soil water-soluble phenols rich in aldehydes, and syringic, ferulic, and benzoic acids.
Collapse
|