1
|
Salvi P, Mahawar H, Agarrwal R, Kajal, Gautam V, Deshmukh R. Advancement in the molecular perspective of plant-endophytic interaction to mitigate drought stress in plants. Front Microbiol 2022; 13:981355. [PMID: 36118190 PMCID: PMC9478035 DOI: 10.3389/fmicb.2022.981355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Change in global climate has started to show its effect in the form of extremes of temperatures and water scarcity which is bound to impact adversely the global food security in near future. In the current review we discuss the impact of drought on plants and highlight the ability of endophytes, microbes that inhabit the plants asymptomatically, to confer stress tolerance to their host. For this we first describe the symbiotic association between plant and the endophytes and then focus on the molecular and physiological strategies/mechanisms adopted by these endophytes to confer stress tolerance. These include root alteration, osmotic adjustment, ROS scavenging, detoxification, production of phytohormones, and promoting plant growth under adverse conditions. The review further elaborates on how omics-based techniques have advanced our understanding of molecular basis of endophyte mediated drought tolerance of host plant. Detailed analysis of whole genome sequences of endophytes followed by comparative genomics facilitates in identification of genes involved in endophyte-host interaction while functional genomics further unveils the microbial targets that can be exploited for enhancing the stress tolerance of the host. Thus, an amalgamation of endophytes with other sustainable agricultural practices seems to be an appeasing approach to produce climate-resilient crops.
Collapse
|
2
|
Martins J, Pétriacq P, Flandin A, Gómez-Cadenas A, Monteiro P, Pinto G, Canhoto J. Genotype determines Arbutus unedo L. physiological and metabolomic responses to drought and recovery. FRONTIERS IN PLANT SCIENCE 2022; 13:1011542. [PMID: 36483964 PMCID: PMC9723149 DOI: 10.3389/fpls.2022.1011542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/24/2022] [Indexed: 05/13/2023]
Abstract
Strawberry tree (Arbutus unedo) is a small resilient species with a circum-Mediterranean distribution, high ecological relevance in southern European forests and with several economical applications. As most orchards are usually installed on marginal lands where plants usually face severe drought, selecting plants that can better cope with water restriction is critical, and a better understanding of the tolerance mechanisms is required. Strawberry tree plants under drought follow a typical isohydric strategy, by limiting transpiration through stomata closure. However, the contribution of genotype and its bio-geographic origin on plant performance needs clarification, as well as the involvement of a specific metabolic reactions associated with the mechanical response. To test this hypothesis, several eco-physiological and biochemical parameters were assessed on different genotypes, and the metabolic profiles studied, including important stress-related phytohormones, on plants under different water regimes (plants watered to 70% and 18% field capacity) and a recovery assay. A contrasting drought tolerance was found in plants from different genotypes, associated with physiological and metabolic responses. Metabolomics revealed more than 500 metabolic features were differentially accumulated, including abscisic and salicylic acids, for the genotype with better performance under drought (A4). This genotype also recovered faster when the imposed stress was interrupted, thus indicating the relevance of metabolic adaptation under water deficit conditions. By correlating carbon assimilation with identified metabolites, some proved to be satisfactory predictors of plant performance under drought and might be used for marker assisted breeding. Therefore, our study proves the importance of genotype as a major selection criterion of resistant plants to drought and provides empirical knowledge of the metabolic response involved. We also hypothesized the involvement of phenolics on response mechanisms under drought, which is worth to be explored to shed light on the metabolic pathways involved in plant response to water stress.
Collapse
Affiliation(s)
- João Martins
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
- *Correspondence: João Martins,
| | - Pierre Pétriacq
- UMR BFP, University Bordeaux, INRAE, Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Villenave d’Ornon, France
| | - Amélie Flandin
- UMR BFP, University Bordeaux, INRAE, Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Villenave d’Ornon, France
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló, Spain
| | - Pedro Monteiro
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Glória Pinto
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Jorge Canhoto
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
| |
Collapse
|