1
|
Pejenaute-Ochoa MD, Tomás-Gallardo L, Ibeas JI, Barrales RR. Row1, a member of a new family of conserved fungal proteins involved in infection, is required for appressoria functionality in Ustilago maydis. THE NEW PHYTOLOGIST 2024; 243:1101-1122. [PMID: 38742361 DOI: 10.1111/nph.19798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
The appressorium of phytopathogenic fungi is a specific structure with a crucial role in plant cuticle penetration. Pathogens with melanized appressoria break the cuticle through cell wall melanization and intracellular turgor pressure. However, in fungi with nonmelanized appressorium, the mechanisms governing cuticle penetration are poorly understood. Here we characterize Row1, a previously uncharacterized appressoria-specific protein of Ustilago maydis that localizes to membrane and secretory vesicles. Deletion of row1 decreases appressoria formation and plant penetration, thereby reducing virulence. Specifically, the Δrow1 mutant has a thicker cell wall that is more resistant to glucanase degradation. We also observed that the Δrow1 mutant has secretion defects. We show that Row1 is functionally conserved at least among Ustilaginaceae and belongs to the Row family, which consists of five other proteins that are highly conserved among Basidiomycota fungi and are involved in U. maydis virulence. We observed similarities in localization between Row1 and Row2, which is also involved in cell wall remodelling and secretion, suggesting similar molecular functions for members of this protein family. Our data suggest that Row1 could modify the chitin-glucan matrix of the fungal cell wall and may be involved in unconventional protein secretion, thereby promoting both appressoria maturation and penetration.
Collapse
Affiliation(s)
- María Dolores Pejenaute-Ochoa
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Ctra. Utrera km.1, 41013, Seville, Spain
| | - Laura Tomás-Gallardo
- Proteomics and Biochemistry Platform, Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Ctra. Utrera km. 1, 41013, Seville, Spain
| | - José I Ibeas
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Ctra. Utrera km.1, 41013, Seville, Spain
| | - Ramón R Barrales
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Ctra. Utrera km.1, 41013, Seville, Spain
| |
Collapse
|
2
|
Manakkatt HM, Gurjar MS, Saharan MS, Aggarwal R. Expression analysis of genes involved in teliospores germination of Tilletia indica inciting Karnal bunt of wheat. Mol Biol Rep 2024; 51:726. [PMID: 38856802 DOI: 10.1007/s11033-024-09690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Karnal bunt of wheat is an important quarantine disease, incited by Tilletia indica. It limits India's trade in wheat export. The teliospores are major source of inoculum to initiate and spread the Karnal bunt disease. The study aimed to identify the germination-related genes in the teliospores of T. indica. METHODS AND RESULTS The candidate genes in the teliospores germination were identified through the differential gene expression analysis with suitable bioinformatics analysis. Keeping in soil-borne nature of fungi, the teliospores of T. indica (2015 and 2018) were subjected to the qPCR analysis. 20 candidate genes were identified having role in germination of teliospores of T. indica. Twenty genes, viz. Ti9297 (9.31, 7.87-fold), Ti8696 (5.13, 6.54-fold), Ti7699 (8.9, 7.7-fold), Ti7858 (10.33, 6.21-fold), Ti7954 (7.46, 5.54-fold), Ti7739 (5.46, 6.46-fold), Ti9665 (10.74, 7.64-fold), Ti9335 (6.75, 4.36-fold), Ti8396 (9.35, 7.72-fold), Ti8126 (8.87, 11.31-fold), Ti7326 (6.04, 7.7-fold), Ti10208 (13.83, 5.81-fold), Ti12356 (7.83, 8.02-fold), Ti14271 (9.98, 6.32-fold), Ti9234 (11.2, 8.72-fold), Ti 8876 (6.47, 3.55-fold), Ti 10,606 (4.97, 2.35-fold), Ti7758 (10.33, 8.78-fold), Ti4692 (6.89, 9.88-fold), and Ti3932 (5.77, 4.5-fold) were found highly expressed in the germinating teliospores of 2015 and 2018, respectively. Eight genes (Ti508, Ti4152, Ti5346, Ti2375, Ti3739, Ti1134, Ti4399, and Ti4422) were downregulated in the germinating teliospores but these eight genes were showed higher expression in the dormant teliospores. CONCLUSIONS Twenty candidate genes were upregulated in the germinating teliospores are supposed to be involved in the process of germination. Eight genes were downregulated which were related to the process of the dormancy of teliospores. The study will be helpful to devise the newer management strategies for Karnal bunt disease of wheat.
Collapse
Affiliation(s)
- Haritha Mohan Manakkatt
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- ICAR-Mahatma Gandhi Integrated Farming Research Institute, Piprakothi, Motihari, Bihar, 845429, India
| | - Malkhan Singh Gurjar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Mahender Singh Saharan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rashmi Aggarwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
3
|
Benson CW, Sheltra MR, Huff DR. The genome of Salmacisia buchloëana, the parasitic puppet master pulling strings of sexual phenotypic monstrosities in buffalograss. G3 (BETHESDA, MD.) 2024; 14:jkad238. [PMID: 37847611 PMCID: PMC10849329 DOI: 10.1093/g3journal/jkad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023]
Abstract
To complete its parasitic lifecycle, Salmacisia buchloëana, a biotrophic fungus, manipulates reproductive organ development, meristem determinacy, and resource allocation in its dioecious plant host, buffalograss (Bouteloua dactyloides; Poaceae). To gain insight into S. buchloëana's ability to manipulate its host, we sequenced and assembled the 20.1 Mb genome of S. buchloëana into 22 chromosome-level pseudomolecules. Phylogenetic analysis suggests that S. buchloëana is nested within the genus Tilletia and diverged from Tilletia caries and Tilletia walkeri ∼40 MYA. We find that S. buchloëana contains a novel chromosome arm with no syntenic relationship to other publicly available Tilletia genomes, and that genes on the novel arm are upregulated upon infection, suggesting that this unique chromosomal segment may have played a critical role in S. buchloëana's evolution and host specificity. Salmacisia buchloëana has one of the largest fractions of serine peptidases (1.53% of the proteome) and one of the highest GC contents (62.3%) in all classified fungi. Analysis of codon base composition indicated that GC content is controlled more by selective constraints than directional mutation, and that S. buchloëana has a unique bias for the serine codon UCG. Finally, we identify 3 inteins within the S. buchloëana genome, 2 of which are located in a gene often used in fungal taxonomy. The genomic and transcriptomic resources generated here will aid plant pathologists and breeders by providing insight into the extracellular components contributing to sex determination in dioecious grasses.
Collapse
Affiliation(s)
- Christopher W Benson
- Department of Plant Science, Pennsylvania State University, University Park, PA 16801, USA
- Intercollegiate Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA 16801, USA
| | - Matthew R Sheltra
- Department of Plant Science, Pennsylvania State University, University Park, PA 16801, USA
- Intercollegiate Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA 16801, USA
| | - David R Huff
- Department of Plant Science, Pennsylvania State University, University Park, PA 16801, USA
| |
Collapse
|
4
|
Kashyap PL, Kumar S, Kumar RS, Sharma A, Khanna A, Raj S, Jasrotia P, Singh G. Molecular diagnostic assay for pre-harvest detection of Tilletia indica infection in wheat plants. Front Microbiol 2023; 14:1291000. [PMID: 38029161 PMCID: PMC10646428 DOI: 10.3389/fmicb.2023.1291000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
The current study describes a new diagnostic method for the rapid and accurate detection of Tilletia indica, the pathogen accountable for causing Karnal bunt (KB) disease in wheat. This method uses quantitative real-time polymerase chain reaction (qPCR) and a primer set derived from glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene of T. indica to identify the presence of the pathogen. The qPCR assay using this primer set was found highly sensitive, with a limit of detection (LOD) value of 4 pg of T. indica DNA. This level of sensitivity allows for the detection of the pathogen even in cases of different growth stages of wheat, where no visible symptoms of infection on the wheat plants can be seen by naked eyes. The study also validated the qPCR assay on ten different wheat cultivars. Overall, this study presents a valuable molecular tool for rapid, specific and sensitive detection of KB fungus in wheat host. This method has practical applications in disease management, screening of wheat genotypes against KB and can aid in the development of strategies to mitigate the impact of Karnal bunt disease on wheat production.
Collapse
Affiliation(s)
- Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, India
| | - Sudheer Kumar
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, India
| | | | | | - Annie Khanna
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, India
| | | | | | | |
Collapse
|
5
|
Kashyap PL, Kumar S, Kumar RS, Sharma A, Khanna A, Kajal, Raj S, Jasrotia P, Singh G. Comparative analysis of nine Tilletia indica genomes for the development of novel microsatellite markers for genetic diversity and population structure analysis. Front Microbiol 2023; 14:1227750. [PMID: 37520344 PMCID: PMC10374028 DOI: 10.3389/fmicb.2023.1227750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Karnal bunt (KB; Tilletia indica) is the prime quarantine concern for quality wheat production throughout the world. The most effective approach to dealing with this biotic stress is to breed KB-resistant wheat varieties, which warrants a better understanding of T. indica genome architecture. In India, the North Western Plain Zone is the prime hot spot for KB disease, but only limited efforts have been made to decipher T. indica diversity at the genomic level. Microsatellites offer a powerful and robust typing system for the characterization and genetic diversity assessment of plant pathogens. At present, inadequate information is available with respect to the development of genome-derived markers for revealing genetic variability in T. indica populations. In current research, nine complete genome sequences of T. indica (PSWKBGH_1, PSWKBGH_2, PSWKBGD_1_3, RAKB_UP_1, TiK_1, Tik, DAOMC236408, DAOMC236414, and DAOMC236416) that exist in the public domain were explored to know the dynamic distribution of microsatellites. Comparative genome analysis revealed a high level of relative abundance and relative density of microsatellites in the PSWKBGH_1 genome in contrast to other genomes. No significant correlation between microsatellite distribution for GC content and genome size was established. All the genomes showed the dominance of tri-nucleotide motifs, followed by mono-, di-, tetra-, hexa-, and penta-nucleotide motifs. Out of 50 tested markers, 36 showed successful amplification in T. indica isolates and produced 52 different alleles. A PCR assay along with analysis of the polymorphic information content (PIC) revealed 10 markers as neutral and polymorphic loci (PIC 0.37). The identified polymorphic SSR loci grouped a geographically distinct T. indica population of 50 isolates representing seven Indian regions (Jammu, Himachal Pradesh, Punjab, Haryana, Uttarakhand, Uttar Pradesh, and Rajasthan) into four distinct clusters. The results of the analysis of molecular variance identified 94% genetic variation within the population and 6% among the population. Structure analysis also confirmed the existence of four genetically diverse groups containing admixtures of T. indica isolates across populations. In nutshell, the current study was successful in identifying novel, neutral and polymorphic microsatellite markers that will be valuable in offering deep insight into the evolutionary relationship and dynamics of the T. indica population for devising effective KB management strategies in wheat.
Collapse
|
6
|
Mei X, Wu X, Zhou F, Liu Y, Ji H, Li Y, Jiang D, Yang M, Xu J, Qiang Y, Wang C, Zhang Y, Zhang C. Non-targeted screening and trimethylamine determination in Tilletia foetida-infected wheat using HS-SPME-GC-MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:181-192. [PMID: 36520423 DOI: 10.1080/19440049.2022.2154853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Common bunt disease of wheat in China is caused mainly by Tilletia foetida. However, reliable approaches for determining disease-associated biochemical markers are rarely reported. Here, a headspace-solid-phase microextraction coupled with headspace GC-tandem mass spectrometry (HS-SPME-GC-MS) was used to screen volatile substances in infected wheat, and an optimal chemical marker was selected to establish analytical methods for disease determination. Non-targeted screening of 13 volatile compounds unique to diseased wheat allowed a metabolite with rotten fish-like smell, trimethylamine (TMA), to be selected as the inspection marker. Subsequently, two analytical methodologies, HS-SPME-GC-MS and headspace gas chromatography with flame ionization detection (HS-GC-FID), were established to determinate the TMA content in wheat. The linear relationship, recovery and reproducibility of the methods were validated. The limit of detection (LOD) was 0.02 µg/kg for the former method, 5000-fold lower than that for the latter. When analysing samples, HS-SPME-GC-MS showed excellent sensitivity and allowed for the determination of 0.05% infected kernels among whole wheat grains. Therefore, TMA determination using HS-SPME-GC-MS is an effective alternative method to detect wheat common bunt disease occurring at extremely low infection rate.
Collapse
Affiliation(s)
- Xiuming Mei
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Biotoxin Analysis & Assessment for State Market Regulation, Nanjing Institute of Product Quality Inspection & Testing, Nanjing, China
| | - Xiaoxiao Wu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Biotoxin Analysis & Assessment for State Market Regulation, Nanjing Institute of Product Quality Inspection & Testing, Nanjing, China
| | - Fan Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Biotoxin Analysis & Assessment for State Market Regulation, Nanjing Institute of Product Quality Inspection & Testing, Nanjing, China
| | - Yanrong Liu
- Key Laboratory of Biotoxin Analysis & Assessment for State Market Regulation, Nanjing Institute of Product Quality Inspection & Testing, Nanjing, China
| | - Hanxu Ji
- Key Laboratory of Biotoxin Analysis & Assessment for State Market Regulation, Nanjing Institute of Product Quality Inspection & Testing, Nanjing, China
| | - Yufeng Li
- Key Laboratory of Biotoxin Analysis & Assessment for State Market Regulation, Nanjing Institute of Product Quality Inspection & Testing, Nanjing, China
| | - Diyao Jiang
- Key Laboratory of Biotoxin Analysis & Assessment for State Market Regulation, Nanjing Institute of Product Quality Inspection & Testing, Nanjing, China
| | - Miao Yang
- Key Laboratory of Biotoxin Analysis & Assessment for State Market Regulation, Nanjing Institute of Product Quality Inspection & Testing, Nanjing, China
| | - Jingjing Xu
- Key Laboratory of Biotoxin Analysis & Assessment for State Market Regulation, Nanjing Institute of Product Quality Inspection & Testing, Nanjing, China
| | - Yuwei Qiang
- Key Laboratory of Biotoxin Analysis & Assessment for State Market Regulation, Nanjing Institute of Product Quality Inspection & Testing, Nanjing, China
| | - Can Wang
- Key Laboratory of Biotoxin Analysis & Assessment for State Market Regulation, Nanjing Institute of Product Quality Inspection & Testing, Nanjing, China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Chi Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Biotoxin Analysis & Assessment for State Market Regulation, Nanjing Institute of Product Quality Inspection & Testing, Nanjing, China
| |
Collapse
|
7
|
Wang A, Shu X, Xu D, Jiang Y, Liang J, Yi X, Zhu J, Yang F, Jiao C, Zheng A, Yin D, Li P. Understanding the Rice Fungal Pathogen Tilletia horrida from Multiple Perspectives. RICE (NEW YORK, N.Y.) 2022; 15:64. [PMID: 36522490 PMCID: PMC9755434 DOI: 10.1186/s12284-022-00612-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Rice kernel smut (RKS), caused by the fungus Tilletia horrida, has become a major disease in rice-growing areas worldwide, especially since the widespread cultivation of high-yielding hybrid rice varieties. The disease causes a significant yield loss during the production of rice male sterile lines by producing masses of dark powdery teliospores. This review mainly summarizes the pathogenic differentiation, disease cycle, and infection process of the T. horrida, as well as the decoding of the T. horrida genome, functional genomics, and effector identification. We highlight the identification and characterization of virulence-related pathways and effectors of T. horrida, which could foster a better understanding of the rice-T. horrida interaction and help to elucidate its pathogenicity molecular mechanisms. The multiple effective disease control methods for RKS are also discussed, included chemical fungicides, the mining of resistant rice germplasms/genes, and the monitoring and early warning signs of this disease in field settings.
Collapse
Affiliation(s)
- Aijun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.
| | - Xinyue Shu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Deze Xu
- Food Crop Research Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Yuqi Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Juan Liang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xiaoqun Yi
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jianqing Zhu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Chunhai Jiao
- Food Crop Research Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Aiping Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Desuo Yin
- Food Crop Research Institute, Hubei Academy of Agriculture Sciences, Wuhan, China.
| | - Ping Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
8
|
Ren Z, Chen R, Muhae-Ud-Din G, Fang M, Li T, Yang Y, Chen W, Gao L. Development of real-time PCR and droplet digital PCR based marker for the detection of Tilletia caries inciting common bunt of wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1031611. [PMID: 36507438 PMCID: PMC9732894 DOI: 10.3389/fpls.2022.1031611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
This is the first study reporting droplet digital PCR and quantitative real time PCR for detection of Tilletia caries (syn. T. tritici), which causes common bunt of wheat and leads to yield losses of 80% in many wheat growing areas worldwide. To establish an accurate, rapid and quantifiable detection method, we tested 100 inter simple sequence repeats (ISSR) primers and obtained a species-specific fragment (515 bp) generated by ISSR 827. Then, a specific 266 bp band for the sequence characterized amplified region (SCAR) marker was produced from T. caries. The detection limit reached 50 pg/μL. Based on the SCAR marker, we further developed a higher sensitivity of quantitative real time-polymerase chain reaction (qRT-PCR) with a detection limit of 2.4 fg/μL, and droplet digital PCR (ddPCR) with a detection limit of 0.24 fg/μL. Both methods greatly improved the detection sensitivity of T. caries, which will be contribute a lot for quickly and accurately detection of T. caries, which causes wheat common bunt.
Collapse
Affiliation(s)
- Zhaoyu Ren
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rongzhen Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Protection, Shenyang Agricultural University, Liaoning, China
| | - Ghulam Muhae-Ud-Din
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingke Fang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Tianya Li
- Department of Plant Protection, Shenyang Agricultural University, Liaoning, China
| | - Yazheng Yang
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Gurjar MS, Jain S, Aggarwal R, Saharan MS, Kumar TPJ, Kharbikar L. Transcriptome Analysis of Wheat- Tilletia indica Interaction Provides Defense and Pathogenesis-Related Genes. PLANTS (BASEL, SWITZERLAND) 2022; 11:3061. [PMID: 36432790 PMCID: PMC9698794 DOI: 10.3390/plants11223061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Karnal bunt (Tilletia indica Mitra) is an internationally quarantined disease of wheat. Until now, very little information has been available on the molecular basis of resistance and pathogenicity of T. indica. To investigate the molecular basis of host−pathogen interaction, the transcriptome of T. indica inoculated resistant (HD29) and susceptible (WH542) genotypes of wheat were analyzed. Approximately 58 million reads were generated using RNA sequencing by the Illumina NextSeq500 platform. These sequence reads were aligned to a reference genome of wheat to compare the expression level of genes in resistant and susceptible genotypes. The high-quality reads were deposited in the NCBI SRA database (SRP159223). More than 80,000 genes were expressed in both the resistant and susceptible wheat genotypes. Of these, 76,088 were commonly expressed genes, including 3184 significantly upregulated and 1778 downregulated genes. Four thousand one hundred thirteen and 5604 genes were exclusively expressed in susceptible and resistant genotypes, respectively. Based on the significance, 503 genes were upregulated and 387 genes were downregulated. Using gene ontology, the majority of coding sequences were associated with response to stimuli, stress, carbohydrate metabolism, developmental process, and catalytic activity. Highly differentially expressed genes (integral component of membrane, exonuclease activity, nucleic acid binding, DNA binding, metal ion binding) were validated in resistant and susceptible genotypes using qPCR analysis and similar expression levels were found in RNA-Seq. Apart from the wheat, the mapping of T. indica was 7.07% and 7.63% of resistant and susceptible hosts, respectively, upon infection, which revealed significant pathogenesis-related genes. This first study provided in-depth information and new insights into wheat−T. indica interaction for managing Karnal bunt disease of wheat.
Collapse
Affiliation(s)
- Malkhan Singh Gurjar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shekhar Jain
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Faculty of Life Sciences, Mandsaur University, Mandsaur 458001, India
| | - Rashmi Aggarwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Mahender Singh Saharan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | | | - Lalit Kharbikar
- Biotechnology Section, ICAR–National Institute of Biotic Stress Management, Raipur 493225, India
| |
Collapse
|
10
|
TritiKBdb: A Functional Annotation Resource for Deciphering the Complete Interaction Networks in Wheat-Karnal Bunt Pathosystem. Int J Mol Sci 2022; 23:ijms23137455. [PMID: 35806459 PMCID: PMC9267065 DOI: 10.3390/ijms23137455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
The study of molecular interactions, especially the inter-species protein-protein interactions, is crucial for understanding the disease infection mechanism in plants. These interactions play an important role in disease infection and host immune responses against pathogen attack. Among various critical fungal diseases, the incidences of Karnal bunt (Tilletia indica) around the world have hindered the export of the crops such as wheat from infected regions, thus causing substantial economic losses. Due to sparse information on T. indica, limited insight is available with regard to gaining in-depth knowledge of the interaction mechanisms between the host and pathogen proteins during the disease infection process. Here, we report the development of a comprehensive database and webserver, TritiKBdb, that implements various tools to study the protein-protein interactions in the Triticum species-Tilletia indica pathosystem. The novel ‘interactomics’ tool allows the user to visualize/compare the networks of the predicted interactions in an enriched manner. TritiKBdb is a user-friendly database that provides functional annotations such as subcellular localization, available domains, KEGG pathways, and GO terms of the host and pathogen proteins. Additionally, the information about the host and pathogen proteins that serve as transcription factors and effectors, respectively, is also made available. We believe that TritiKBdb will serve as a beneficial resource for the research community, and aid the community in better understanding the infection mechanisms of Karnal bunt and its interactions with wheat. The database is freely available for public use at http://bioinfo.usu.edu/tritikbdb/.
Collapse
|
11
|
Sharma P, Chauhan R, Pande V, Basu T, Rajesh, Kumar A. Rapid sensing ofTilletia indica - Teliospore in wheat extractby apiezoelectric label free immunosensor. Bioelectrochemistry 2022; 147:108175. [PMID: 35749887 DOI: 10.1016/j.bioelechem.2022.108175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/02/2022]
Abstract
'Tilletia indica', a fungal pathogen causes Karnal bunt disease in wheat. It has been renowned as a quarantine pest in more than 50 countries, therefore, urged a threat to wheat in the international market. To date, conventional methods employed to detect the disease involve the tentative identification of spores (teliospores) based on morphology. For effective and specific disease control, it is essential to get the specific protein of the analyte (teliospore) to target. In present study, a label-free immunosensor has been developed to detect Karnal bunt disease. A specifically synthesized anti-teliosporic monoclonal antibody (mAb) was immobilized on a self-assembled monolayer of 11-mercaptoundecanoic acid (11-MUA) to detect teliospore. All modified electrodes were morphologically characterized by scanning electron microscopy (SEM), atomic force microscopy(AFM), Fourier transform infra-red spectroscopy (FT-IR) techniques and analytically characterized by quartz crystal microbalance (QCM) and cyclic voltammetry (CV). The linearity range was 19 pg mL-1-10 ng mL-1, while the detection limit (LOD) was 4.4 pg mL-1 and 12.5 pg mL-1, respectively. The stability, reproducibility, and repeatability of the immunoelectrode was examined by CV, and found stable upto 18 days with negligible variation. The binding affinity (association constant (Ka)) of the developed immunoelectrode was 1.9 × 10-2 ng mL-1. The real sample has been tested in spiked wheat samples and found about 95-103 % recovery with 2.8-4.4 % relative error.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Bhimtal, Nainital, Uttarakhand, 263136, India; Department of Molecular Biology and Genetic Engineering, College of Basic Sciences & Humanities, G.B. Pant University of Agriculture & Technology, Pant Nagar 263145, Uttarakhand, India.
| | - Ruchika Chauhan
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences & Humanities, G.B. Pant University of Agriculture & Technology, Pant Nagar 263145, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Bhimtal, Nainital, Uttarakhand, 263136, India
| | - Tinku Basu
- Amity Centre for Nanomedicine, Amity University Uttar Pradesh, Noida 201303, India
| | - Rajesh
- CSIR- National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences & Humanities, G.B. Pant University of Agriculture & Technology, Pant Nagar 263145, Uttarakhand, India; Director Education, Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, India.
| |
Collapse
|
12
|
Genetic Variability and Aggressiveness of Tilletia indica Isolates Causing Karnal Bunt in Wheat. J Fungi (Basel) 2022; 8:jof8030219. [PMID: 35330221 PMCID: PMC8950583 DOI: 10.3390/jof8030219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/04/2022] Open
Abstract
Karnal bunt caused by Tilletia indica is a quarantine disease of wheat causing huge economic losses due to the ban on the import of bunted grains. This study was designed to characterize pathogenicity, aggressiveness and genetic diversity of 68 Tilletia indica isolates collected from different geographic regions of Pakistan. Forty-six isolates were tested for their pathogenicity on eight wheat varieties, out of which three were non-aggressive. The coefficient of infection (CI) ranged from 15.73% (PB-25) to 10% (PB-68, PB-60, and PB-43). The isolates collected from central Punjab showed higher infestation compared to other isolates. Among the wheat varieties used for the aggressiveness study, WL-711 showed susceptible reaction with 10.88% CI, while NIFA-Barsat, HD-29, Janbaz, Bakhtawar-92, Tatara, and AARI 2011 showed resistance to the highly resistant response. These isolates were amplified using 31 random amplified polymorphic DNA (RAPD) markers and 32 inter-simple sequence repeat (ISSR) markers for diversity analysis. The principal component analysis (PCA) and analysis of molecular variance (AMOVA) showed greater divergence among isolates collected from Punjab and Khyber Pakhtunkhwa (KPK), with a moderate level of admixture. The isolates from Faisalabad (Punjab) were more aggressive compared to isolates from KPK and were clearly separated based on PCA, indicating the significant genetic distance in the populations. Our findings will assist breeders and pathologists in better understanding the pathogenic variability in Tilletia indica and in subsequent disease management.
Collapse
|
13
|
Trivellone V, Hoberg EP, Boeger WA, Brooks DR. Food security and emerging infectious disease: risk assessment and risk management. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211687. [PMID: 35223062 PMCID: PMC8847898 DOI: 10.1098/rsos.211687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/20/2022] [Indexed: 05/03/2023]
Abstract
Climate change, emerging infectious diseases (EIDs) and food security create a dangerous nexus. Habitat interfaces, assumed to be efficient buffers, are being disrupted by human activities which in turn accelerate the movement of pathogens. EIDs threaten directly and indirectly availability and access to nutritious food, affecting global security and human health. In the next 70 years, food-secure and food-insecure countries will face EIDs driving increasingly unsustainable costs of production, predicted to exceed national and global gross domestic products. Our modern challenge is to transform this business as usual and embrace an alternative vision of the biosphere formalized in the Stockholm paradigm (SP). First, a pathogen-centric focus shifts our vision of risk space, determining how pathogens circulate in realized and potential fitness space. Risk space and pathogen exchange are always heightened at habitat interfaces. Second, apply the document-assess-monitor-act (DAMA) protocol developing strategic data for EID risk, to be translated, synthesized and broadcast as actionable information. Risk management is realized through targeted interventions focused around information exchanged among a community of scientists, policy practitioners of food and public health security and local populations. Ultimately, SP and DAMA protect human rights, supporting food security, access to nutritious food, health interventions and environmental integrity.
Collapse
Affiliation(s)
- Valeria Trivellone
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana Champaign, 1816 South Oak Street, Champaign, IL 61820, USA
| | - Eric P. Hoberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI 53716, USA
- Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Walter A. Boeger
- Biological Interactions, Universidade Federal do Paraná, Cx Postal 19073, Curitiba, Brazil
| | - Daniel R. Brooks
- Department of Ecology and Evolutionary Biology, University of Toronto (emeritus), Toronto, ON, Canada
- Harold W. Manter Laboratory of Parasitology, University of Nebraska-Lincoln, NE 68588-0514, USA
- Institute for Evolution, Centre for Ecological Research, Karolina ut 29, Budapest, Hungary H-1113
| |
Collapse
|
14
|
Shafqat N, Shahzad A, Shah SH, Mahmood Z, Sajid M, Ullah F, Islam M, Masood R, Jabeen N, Zubair K. Characterization of wheat-Thinopyrum bessarabicum genetic stock for stripe rust and Karnal bunt resistance. BRAZ J BIOL 2021; 83:e246440. [PMID: 34550282 DOI: 10.1590/1519-6984.246440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/24/2021] [Indexed: 11/21/2022] Open
Abstract
Utilization of modern breeding techniques for developing high yielding and uniform plant types ultimately narrowing the genetic makeup of most crops. Narrowed genetic makeup of these crops has made them vulnerable towards disease and insect epidemics. For sustainable crop production, genetic variability of these crops must be broadened against various biotic and abiotic stresses. One of the ways to widen genetic configuration of these crops is to identify novel additional sources of durable resistance. In this regard crops wild relatives are providing valuable sources of allelic diversity towards various biotic, abiotic stress tolerance and quality components. For incorporating novel variability from wild relative's wide hybridization technique has become a promising breeding method. For this purpose, wheat-Th. bessarabicum amphiploid, addition and translocation lines have been screened in field and screen house conditions to get novel sources of yellow rust and Karnal bunt resistant. Stripe rust screening under field conditions has revealed addition lines 4JJ and 6JJ as resistant to moderately resistant while addition lines 3JJ, 5JJ, 7JJ and translocation lines Tr-3, Tr-6 as moderately resistant wheat-Thinopyrum-bessarabicum genetic stock. Karnal bunt screening depicted addition lines 5JJ and 4JJ as highly resistant genetic stock. These genetic stocks may be used to introgression novel stripe rust and Karnal bunt resistance from the tertiary gene pool into susceptible wheat backgrounds.
Collapse
Affiliation(s)
- N Shafqat
- Hazara University, Department of Agriculture, Mansehra, Pakistan
| | - A Shahzad
- National Institute for Genomics and Advanced Biotechnology - NIGAB, National Agricultural Research Centre - NARC, Islamabad, Pakistan
| | - S H Shah
- Allama Iqbal Open University, Faculty of Sciences, Department of Agricultural Sciences, Islamabad, Pakistan
| | - Z Mahmood
- National Agricultural Research Centre - NARC, Wheat Program, Islamabad, Pakistan
| | - M Sajid
- Hazara University, Department of Agriculture, Mansehra, Pakistan
| | - F Ullah
- Hazara University, Department of Agriculture, Mansehra, Pakistan
| | - M Islam
- Hazara University Mansehra, Department of Genetics, Mansehra, Pakistan
| | - R Masood
- Hazara University Mansehra, Department of Botany, Mansehra, Pakistan
| | - N Jabeen
- Hazara University, Department of Agriculture, Mansehra, Pakistan
| | - K Zubair
- Hazara University Mansehra, Department of Genetics, Mansehra, Pakistan
| |
Collapse
|
15
|
Emebiri L, Hildebrand S, Tan MK, Juliana P, Singh PK, Fuentes-Davila G, Singh RP. Pre-emptive Breeding Against Karnal Bunt Infection in Common Wheat: Combining Genomic and Agronomic Information to Identify Suitable Parents. FRONTIERS IN PLANT SCIENCE 2021; 12:675859. [PMID: 34394138 PMCID: PMC8358121 DOI: 10.3389/fpls.2021.675859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Wheat (Triticum aestivum L.) is the most widely grown cereal crop in the world and is staple food to half the world's population. The current world population is expected to reach 9.8 billion people by 2050, but food production is not expected to keep pace with demand in developing countries. Significant opportunities exist for traditional grain exporters to produce and export greater amounts of wheat to fill the gap. Karnal bunt, however, is a major threat, due to its use as a non-tariff trade barrier by several wheat-importing countries. The cultivation of resistant varieties remains the most cost-effective approach to manage the disease, but in countries that are free of the disease, genetic improvement is difficult due to quarantine restrictions. Here we report a study on pre-emptive breeding designed to identify linked molecular markers, evaluate the prospects of genomic selection as a tool, and prioritise wheat genotypes suitable for use as parents. In a genome-wide association (GWAS) study, we identified six DArTseq markers significantly linked to Karnal bunt resistance, which explained between 7.6 and 29.5% of the observed phenotypic variation. The accuracy of genomic prediction was estimated to vary between 0.53 and 0.56, depending on whether it is based solely on the identified Quantitative trait loci (QTL) markers or the use of genome-wide markers. As genotypes used as parents would be required to possess good yield and phenology, further research was conducted to assess the agronomic value of Karnal bunt resistant germplasm from the International Maize and Wheat Improvement Center (CIMMYT). We identified an ideal genotype, ZVS13_385, which possessed similar agronomic attributes to the highly successful Australian wheat variety, Mace. It is phenotypically resistant to Karnal bunt infection (<1% infection) and carried all the favourable alleles detected for resistance in this study. The identification of a genotype combining Karnal bunt resistance with adaptive agronomic traits overcomes the concerns of breeders regarding yield penalty in the absence of the disease.
Collapse
Affiliation(s)
- Livinus Emebiri
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, NSW, Australia
| | - Shane Hildebrand
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Mui-Keng Tan
- NSW Department of Primary Industries, Menangle, NSW, Australia
| | - Philomin Juliana
- International Maize and Wheat Improvement Center, Mexico City, Mexico
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center, Mexico City, Mexico
| | | | - Ravi P. Singh
- International Maize and Wheat Improvement Center, Mexico City, Mexico
| |
Collapse
|
16
|
Arif M, Atta S, Bashir MA, Khan MI, Hussain A, Shahjahan M, Alwahibi MS, Elshikh MS. The impact of Fosetyl-Aluminium application timing on Karnal bunt suppression and economic returns of bread wheat (Triticum aestivum L.). PLoS One 2021; 16:e0244931. [PMID: 33428646 PMCID: PMC7799839 DOI: 10.1371/journal.pone.0244931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/20/2020] [Indexed: 11/19/2022] Open
Abstract
Fungal pathogens exert severe qualitative and quantitative damages to wheat crop. Karnal bunt of wheat caused by Tilletia indica Mitra, Mundkur is a severe threat to global food security. Nonetheless, T. indica is regulated as a quarantine pest in numerous countries, which further aggravates the situation. Tolerant varieties and appropriate management practices for Karnal bunt are imperative to meet the global wheat demands. This two-year study explored the impact of fungicide [Fosetyl-Aluminium (Aliette)] application timing on allometric traits, disease suppression and economic returns of bread wheat. Four bread wheat cultivars differing in their tolerance to Karnal bunt were used in the study. Fungicide was applied as either seed treatment (ST), foliar application at heading (FAH) or ST + FAH, whereas no application (NA) was taken as control. Lasani-08 performed better than the rest of the cultivars in terms of allometric traits (plant height, leaf area, crop growth rate, photosynthesis, and chlorophyll content), yield and economic returns. Nonetheless, minimal disease severity was recorded for Lasani-08 compared to other cultivars during both years. The ST improved allometric traits of all cultivars; however, ST + FAH resulted in higher yield and economic returns. Cultivar Pasban-90 observed the highest disease severity and performed poor for allometric traits, yield and economic returns. It is concluded that ST + FAH of Fosetyl-Aluminium could be a pragmatic option to cope Karnal bunt of wheat. Nonetheless, Pasban-90 must not be used for cultivation to avoid yield and quality losses.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
- * E-mail:
| | - Sagheer Atta
- Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Amjad Bashir
- Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Ifnan Khan
- Department of Plant Breeding and Genetics, Faculty of Agricultural sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Ansar Hussain
- Department of Plant Breeding and Genetics, Faculty of Agricultural sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Shahjahan
- Department of Plant Pathology, Faculty of Crop and Food Sciences, PMAS, Arid Agriculture University, Rawalpindi, Pakistan
| | - Mona S. Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|