1
|
Saieed MAU, Zhao Y, Islam S, Ma W. Identifying and Characterizing Candidate Genes Contributing to a Grain Yield QTL in Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 13:26. [PMID: 38202333 PMCID: PMC10780351 DOI: 10.3390/plants13010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 01/12/2024]
Abstract
The current study focuses on identifying the candidate genes of a grain yield QTL from a double haploid population, Westonia × Kauz. The QTL region spans 20 Mbp on the IWGSC whole-genome sequence flank with 90K SNP markers. The IWGSC gene annotation revealed 16 high-confidence genes and 41 low-confidence genes. Bioinformatic approaches, including functional gene annotation, ontology investigation, pathway exploration, and gene network study using publicly available gene expression data, enabled the short-listing of four genes for further confirmation. Complete sequencing of those four genes demonstrated that only two genes are polymorphic between the parental cultivars, which are the ferredoxin-like protein gene and the tetratricopeptide-repeat (TPR) protein gene. The two genes were selected for downstream investigation. Two SNP variations were observed in the exon for both genes, with one SNP resulting in changes in amino acid sequence. qPCR-based gene expression showed that both genes were highly expressed in the high-yielding double haploid lines along with the parental cultivar Westonia. In contrast, their expression was significantly lower in the low-yielding lines in the other parent. It can be concluded that these two genes are the contributing genes to the grain yield QTL.
Collapse
Affiliation(s)
- Md Atik Us Saieed
- Food Futures Institute, School of Health, Education & Environment, Murdoch University, Perth, WA 6150, Australia; (M.A.U.S.); (Y.Z.); (S.I.)
- Department of Seed Science & Technology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Yun Zhao
- Food Futures Institute, School of Health, Education & Environment, Murdoch University, Perth, WA 6150, Australia; (M.A.U.S.); (Y.Z.); (S.I.)
| | - Shahidul Islam
- Food Futures Institute, School of Health, Education & Environment, Murdoch University, Perth, WA 6150, Australia; (M.A.U.S.); (Y.Z.); (S.I.)
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Wujun Ma
- Food Futures Institute, School of Health, Education & Environment, Murdoch University, Perth, WA 6150, Australia; (M.A.U.S.); (Y.Z.); (S.I.)
- College of Agronomy, Qingdao Agriculture University, Qingdao 266109, China
| |
Collapse
|
2
|
Wang Q, Ding L, Wang R, Liang Z. A Review on the Morphology, Cultivation, Identification, Phytochemistry, and Pharmacology of Kitagawia praeruptora (Dunn) Pimenov. Molecules 2023; 28:8153. [PMID: 38138641 PMCID: PMC10745425 DOI: 10.3390/molecules28248153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Kitagawia praeruptora (Dunn) Pimenov, commonly known as Qianhu in China, is a widely used folk Chinese herbal medicine. This article reviews its botanical traits, ethnopharmacology, cultivation techniques, identification, phytochemical compositions, and pharmacological effects. Over 70 coumarin compounds, including simple coumarins, pyranocoumarins, and furanocoumarins, have been isolated within this plant. Additionally, K. praeruptora contains other components such as flavonoids, fatty acids, benzoic acids, and sterols. This information highlights the importance of utilizing active ingredients and excavating pharmacological effects. With its remarkable versatility, K. praeruptora exhibits a wide range of pharmacological effects. It has been found to possess expectorant and bronchodilator properties, cardiovascular protection, antimicrobial and antioxidant activities, anti-tumor effects, and even antidiabetic properties. It is recommended to focus on the development of new drugs that leverage the active ingredients of K. praeruptora and explore its potential for new clinical applications and holistic utilization.
Collapse
Affiliation(s)
| | | | - Ruihong Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Q.W.); (L.D.)
| | - Zongsuo Liang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Q.W.); (L.D.)
| |
Collapse
|
3
|
Bhattarai R, Liu H, Siddique KHM, Yan G. Transcriptomic profiling of near-isogenic lines reveals candidate genes for a significant locus conferring metribuzin resistance in wheat. BMC PLANT BIOLOGY 2023; 23:237. [PMID: 37142987 PMCID: PMC10161546 DOI: 10.1186/s12870-023-04166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Weeds reduce wheat yields in dryland farming systems. Herbicides such as metribuzin are commonly used to control weeds. However, wheat has a narrow safety margin against metribuzin. Standing crops such as wheat with weeds in the same field can also be killed by the same dose of metribuzin. Therefore, it is important to identify metribuzin resistance genes and understand the resistance mechanism in wheat for sustainable crop production. A previous study identified a significant metribuzin resistance wheat QTL, Qsns.uwa.4 A.2, explaining 69% of the phenotypic variance for metribuzin resistance. RESULTS Two NIL pairs with the most contrasting performance in the metribuzin treatment and different in genetic backgrounds were compared using RNA sequence analysis, identifying nine candidate genes underlying Qsns.uwa.4 A.2 responsible for metribuzin resistance. Quantitative RT-qPCR further validated the candidate genes, with TraesCS4A03G1099000 (nitrate excretion transporter), TraesCS4A03G1181300 (aspartyl protease), and TraesCS4A03G0741300 (glycine-rich proteins) identified as key factors for metribuzin resistance. CONCLUSION Identified markers and key candidate genes can be used for selecting metribuzin resistance in wheat.
Collapse
Affiliation(s)
- Rudra Bhattarai
- UWA School of Agriculture and Environment, The University of Western Australia, 6009, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, 6009, Perth, WA, Australia
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, 6009, Perth, WA, Australia.
- The UWA Institute of Agriculture, The University of Western Australia, 6009, Perth, WA, Australia.
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, 6009, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, 6009, Perth, WA, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, 6009, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, 6009, Perth, WA, Australia
| |
Collapse
|
4
|
Kurya B, Mia MS, Liu H, Yan G. Genomic Regions, Molecular Markers, and Flanking Genes of Metribuzin Tolerance in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:842191. [PMID: 35665179 PMCID: PMC9161082 DOI: 10.3389/fpls.2022.842191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Understanding the genetics of metribuzin (a group C herbicide) tolerance in wheat is vital in developing tolerant cultivars to improve wheat productivity in dryland farming systems. This study investigated metribuzin tolerance in wheat by conducting a Genome-wide Association Studies (GWAS) with a panel of 150 wheat genotypes of diverse genetic backgrounds and genotyped them with the wheat 90 K SNP genotyping assay. The phenotyping was conducted in a temperature-controlled glasshouse at the University of Western Australia (UWA). Genotypes were sprayed with a metribuzin dose of 400 grams of active ingredient (g. a.i.) ha-1 as pre-emergent in a specialized spraying cabinet and transferred to the glasshouse where the tolerance level of the genotypes was assessed by measuring the relative reduction in chlorophyll content of the leaves. The decrease in chlorophyll content of the treated plants compared to the control was regarded as the phytotoxic effects of metribuzin. GWAS analysis following a mixed linear model revealed 19 genomic regions with significant marker-trait associations (MTAs), including ten on chromosome 6A, three on chromosome 2B, and one on chromosomes 3A, 5B, 6B 6D, 7A, and 7B, respectively. Sequences of the significant markers were blasted against the wheat genome, IWGSC RefSeq V1.0, and candidate genes having annotations related to herbicide tolerance in wheat, especially in pathways reported to be involved in metribuzin tolerance, such as cytochrome P450 pathways and ATP Binding Cassette (ABC) superfamilies, were identified in these genomic regions. These included TraesCS6A01G028800, TraesCS6A02G353700, TraesCS6A01G326200, TraesCS7A02G331000, and TraesCS2B01G465200. These genomic regions were validated on 30 top tolerant and 30 most susceptible genotypes using the five closest SSR makers to the flanked SNPs. Sufficient polymorphism was detected on two markers (wms193 and barc1036) that were found to differentiate between the susceptible and tolerant alleles and a t-test analysis of the phenotypic data shows a significant (value of p < 0.001) difference suggesting that these markers can be used for marker-assisted selection (MAS) in metribuzin studies and wheat breeding programs.
Collapse
Affiliation(s)
- Benjamin Kurya
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Md Sultan Mia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- Department of Primary Industries and Regional Development (DPIRD), South Perth, WA, Australia
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
5
|
Effects of Metribuzin Herbicide on Some Morpho-Physiological Characteristics of Two Echinacea Species. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Echinacea is a perennial plant that is used for its phytotherapeutic potential. Echinacea crops are often affected by invasive weeds. One of the most effective strategies in weed control is the use of chemicals such as herbicides. However, herbicides also affect the physiological and morphological processes of Echinacea. For this reason, the aim of this study was to determine the effects of different dosages (0, 250, 500, 750, 1000, and 1250 g ha−1) of the postemergent herbicide metribuzin on some morphological and physiological characteristics of Echinacea purpurea and Echinacea angustifolia collected from different locations in Iran (E. purpurea from the Shiraz and Isfahan regions and E. angustifolia from the Ardestan and Kazerun regions). Application of metribuzin decreased leaf dry weight for both Echinacea species at high doses (750 and 1250 g ha−1). At high metribuzin dose (1250 g ha−1), E. purpurea Shiraz leaves showed an increase in MDA (malondialdehyde) up to 9.14, while in other species the MDA content was lower. Minimum and maximum fluorescence increased at both the registered dosage (500 g ha−1) and at high doses (750–1250 g ha−1) of metribuzin treatments in both species. The Fv/Fm (maximum quantum yield) value was reduced in herbicide treated species, compared to the control, starting at the 250 g ha−1 dose, and was lowest at 750 g ha−1 dose. The results of this study indicate that metribuzin has adverse effects on the physiology and morphology of Echinacea species at dosages above 500 g ha−1.
Collapse
|
6
|
Wong ACS, Massel K, Lam Y, Hintzsche J, Chauhan BS. Biotechnological Road Map for Innovative Weed Management. FRONTIERS IN PLANT SCIENCE 2022; 13:887723. [PMID: 35548307 PMCID: PMC9082642 DOI: 10.3389/fpls.2022.887723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 05/07/2023]
Abstract
In most agriculture farmlands, weed management is predominantly reliant on integrated weed management (IWM) strategies, such as herbicide application. However, the overuse and misuse of herbicides, coupled with the lack of novel active ingredients, has resulted in the uptrend of herbicide-resistant weeds globally. Moreover, weedy traits that contribute to weed seed bank persistence further exacerbate the challenges in weed management. Despite ongoing efforts in identifying and improving current weed management processes, the pressing need for novel control techniques in agricultural weed management should not be overlooked. The advent of CRISPR/Cas9 gene-editing systems, coupled with the recent advances in "omics" and cheaper sequencing technologies, has brought into focus the potential of managing weeds in farmlands through direct genetic control approaches, but could be achieved stably or transiently. These approaches encompass a range of technologies that could potentially manipulate expression of key genes in weeds to reduce its fitness and competitiveness, or, by altering the crop to improve its competitiveness or herbicide tolerance. The push for reducing or circumventing the use of chemicals in farmlands has provided an added incentive to develop practical and feasible molecular approaches for weed management, although there are significant technical, practical, and regulatory challenges for utilizing these prospective molecular technologies in weed management.
Collapse
Affiliation(s)
- Albert Chern Sun Wong
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Albert Chern Sun Wong,
| | - Karen Massel
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Yasmine Lam
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica Hintzsche
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Bhagirath Singh Chauhan
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Gatton, QLD, Australia
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, Australia
| |
Collapse
|
7
|
Bhattarai R, Liu H, Siddique KHM, Yan G. Characterisation of a 4A QTL for Metribuzin Resistance in Wheat by Developing Near-Isogenic Lines. PLANTS (BASEL, SWITZERLAND) 2021; 10:1856. [PMID: 34579389 PMCID: PMC8466451 DOI: 10.3390/plants10091856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 09/05/2021] [Indexed: 11/17/2022]
Abstract
Wheat (Triticum aestivum L.) production is constantly affected by weeds in the farming system. Chemical-based weed management is widely practiced; broad-spectrum herbicides such as metribuzin have been successfully used to control weeds in Australia and elsewhere of the world. Breeding metribuzin-resistant wheat through genetic improvement is needed for effective control of weeds. Quantitative trait loci (QTLs) mapping efforts identified a major QTL on wheat chromosome 4A, explaining up to 20% of the phenotypic variance for metribuzin resistance. The quantitative nature of inheritance of this QTL signifies the importance of near-isogenic lines (NILs), which can convert a quantitative trait into a Mendelian factor for better resolution of the QTL. In the current study, NILs were developed using a heterogeneous inbred family method combined with a fast generation-cycling system in a population of Chuan Mai 25 (resistant) and Ritchie (susceptible). Seven pairs of NILs targeting the 4A QTL for metribuzin resistance were confirmed with a molecular marker and phenotyping. The resistant allele from the resistant parent increased metribuzin resistance by 63-85% (average 69%) compared with the susceptible allele from the susceptible parent. Segregation analysis in the NIL pairs for thousand grain weight (TGW) (g), biomass per plant (kg), tillers per plant, plant height (cm), yield per plant, and powdery mildew visual score (0-9) indicated that these traits were linked with metribuzin resistance. Similarly, TGW was observed to co-segregate with metribuzin resistance in most confirmed NILs, signifying that the two traits are controlled by closely linked genes. The most contrasting NILs can be further characterised by transcriptomic and proteomic analyses to identify the candidate genes responsible for metribuzin resistance.
Collapse
Affiliation(s)
- Rudra Bhattarai
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (R.B.); (K.H.M.S.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (R.B.); (K.H.M.S.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Kadambot H. M. Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (R.B.); (K.H.M.S.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (R.B.); (K.H.M.S.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
8
|
Halder T, Liu H, Chen Y, Yan G, Siddique KHM. Identification of Candidate Genes for Root Traits Using Genotype-Phenotype Association Analysis of Near-Isogenic Lines in Hexaploid Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:3579. [PMID: 33808237 PMCID: PMC8038026 DOI: 10.3390/ijms22073579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/09/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Global wheat (Triticum aestivum L.) production is constrained by different biotic and abiotic stresses, which are increasing with climate change. An improved root system is essential for adaptability and sustainable wheat production. In this study, 10 pairs of near-isogenic lines (NILs)-targeting four genomic regions (GRs) on chromosome arms 4BS, 4BL, 4AS, and 7AL of hexaploid wheat-were used to phenotype root traits in a semi-hydroponic system. Seven of the 10 NIL pairs significantly differed between their isolines for 11 root traits. The NIL pairs targeting qDSI.4B.1 GR varied the most, followed by the NIL pair targeting qDT.4A.1 and QHtscc.ksu-7A GRs. For pairs 5-7 targeting qDT.4A.1 GR, pair 6 significantly differed in the most root traits. Of the 4 NIL pairs targeting qDSI.4B.1 GR, pairs 2 and 4 significantly differed in 3 and 4 root traits, respectively. Pairs 9 and 10 targeting QHtscc.ksu-7A GR significantly differed in 1 and 4 root traits, respectively. Using the wheat 90K Illumina iSelect array, we identified 15 putative candidate genes associated with different root traits in the contrasting isolines, in which two UDP-glycosyltransferase (UGT)-encoding genes, TraesCS4A02G185300 and TraesCS4A02G442700, and a leucine-rich repeat receptor-like protein kinase (LRR-RLK)-encoding gene, TraesCS4A02G330900, also showed important functions for root trait control in other crops. This study characterized, for the first time, that these GRs control root traits in wheat, and identified candidate genes, although the candidate genes will need further confirmation and validation for marker-assisted wheat breeding.
Collapse
Affiliation(s)
- Tanushree Halder
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (H.L.); (Y.C.); (G.Y.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (H.L.); (Y.C.); (G.Y.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Yinglong Chen
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (H.L.); (Y.C.); (G.Y.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (H.L.); (Y.C.); (G.Y.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Kadambot H. M. Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (H.L.); (Y.C.); (G.Y.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
9
|
Bhoite R, Si P, Siddique KHM, Yan G. Comparative transcriptome analyses for metribuzin tolerance provide insights into key genes and mechanisms restoring photosynthetic efficiency in bread wheat (Triticum aestivum L.). Genomics 2021; 113:910-918. [PMID: 33600945 DOI: 10.1016/j.ygeno.2021.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/12/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Weeds are the biggest threat to cropping system sustainability in wheat. Metribuzin is a versatile herbicide for broad-spectrum weed management. Understanding key genes, mechanisms and functional markers are essential to develop higher metribuzin tolerant wheats. We identified Chuan Mai 25 (tolerant) and Ritchie (susceptible) as contrasting genotypes to metribuzin stress through dose-response analyses. Transcriptome sequencing using NovaSeq 6000 RNA-Seq platform identified a total of 77,443 genes; 59,915 known genes and 17,528 novel genes. The functional enrichment analysis at 0 h, 24 h and 60 h herbicide exposure revealed that endogenous increase of metabolic enzymes, light-harvesting chlorophyll proteins, PSII stability factor HCF136 and glucose metabolism conferred metribuzin tolerance. The validation of DEGs using RT-qPCR and QTL mapping confirmed their responsiveness to metribuzin. Transcription factors MYB, AP2-EREBP, ABI3VP1, bHLH, NAC are significantly expressed during metribuzin stress. Transcripts with significant enrichments revealed 114 SSRs for genomic selection. The master regulators provide promising avenues for enhancing metribuzin tolerance.
Collapse
Affiliation(s)
- Roopali Bhoite
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| | - Ping Si
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|