1
|
Sakthivel K, Balasubramanian R, Sampathrajan V, Veerasamy R, Appachi SV, K K K. Transforming tomatoes into GABA-rich functional foods through genome editing: A modern biotechnological approach. Funct Integr Genomics 2025; 25:27. [PMID: 39871009 DOI: 10.1007/s10142-025-01538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/29/2025]
Abstract
Gamma-aminobutyric acid (GABA) functions as an inhibitory neurotransmitter which blocks the impulses between nerve cells in the brain. Due to the increasing awareness about the health promoting benefits associated with GABA, it is also artificially synthesized and consumed as a nutritional supplement by people in some regions of the world. Though among the fresh vegetables, tomato fruits do contain a comparatively higher amount of GABA (0.07 to 2.01 mg g-1 FW), it needs to be further enhanced to fully impart its potential health benefits. Achieving this feat through classical breeding approaches is time and resource consuming, and is also associated with linkage drag. On the other hand, precise targeting of specific sites in the genome with less off- target effects is mediated by CRISPR/Cas9 genome editing tool and is widely used to overcome the barriers associated with traditional breeding approaches. Combining genome editing with speed breeding techniques can enable the rapid development of GABA-rich tomato cultivars, paving a way to unlock a new era of functional foods, where every bite contributes to cognitive well-being and holistic health. This review highlights the significance of GABA boosted functional foods and explores the potential of CRISPR/Cas9 technology for developing GABA enriched tomatoes.
Collapse
Affiliation(s)
- Kausalya Sakthivel
- Department of Plant Biotechnology, Tamilnadu Agricultural University, 641003, Coimbatore, India
| | | | | | - Ravichandran Veerasamy
- Department of Crop Physiology, Tamilnadu Agricultural University, 641003, Coimbatore, India
| | | | - Kumar K K
- Department of Plant Biotechnology, Tamilnadu Agricultural University, 641003, Coimbatore, India.
| |
Collapse
|
2
|
Kang GH, Ko Y, Lee JM. Enhancing virus-mediated genome editing for cultivated tomato through low temperature. PLANT CELL REPORTS 2025; 44:22. [PMID: 39762363 DOI: 10.1007/s00299-024-03392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/24/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025]
Abstract
KEY MESSAGE Viral vector-mediated gene editing is enhanced for cultivated tomato under low temperature conditions, enabling higher mutation rates, heritable, and virus-free gene editing for efficient breeding. The CRISPR/Cas system, a versatile gene-editing tool, has revolutionized plant breeding by enabling precise genetic modifications. The development of robust and efficient genome-editing tools for crops is crucial for their application in plant breeding. In this study, we highly improved virus-induced genome-editing (VIGE) system for cultivated tomato. Vectors of tobacco rattle virus (TRV) and potato virus X (PVX) were used to deliver sgRNA targeting phytoene desaturase (SlPDS), along with mobile RNA sequences of tFT or tRNAIleu, into Cas9-overexpressing cultivated tomato (S. lycopersicum cv. Moneymaker). Our results demonstrate that low temperature significantly enhanced viral vector-mediated gene editing efficiency in both cotyledons and systemic upper leaves. However, no mutant progeny was obtained from TRV- and PVX301-infected MM-Cas9 plants. To address this challenge, we employed tissue culture techniques and found that low-temperature incubations at the initiation stage of tissue culture lead to enhanced editing efficiency in both vectors, resulting in a higher mutation rate (> 70%) of SlPDS in regenerated plants. Heritable gene-edited and virus-free progenies were successfully identified. This study presents a straightforward approach to enhance VIGE efficiency and the expeditious production of gene-edited lines in tomato breeding.
Collapse
Affiliation(s)
- Ga Hui Kang
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yujung Ko
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
3
|
Ishimoto S, Fukusaki E, Shimma S. Mass spectrometry imaging of gamma-aminobutyric acid and glutamic acid decarboxylase reactions at various stages of banana ripening. J Biosci Bioeng 2025; 139:79-84. [PMID: 39482156 DOI: 10.1016/j.jbiosc.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024]
Abstract
Banana is the fourth most consumed crop worldwide, and its high economic value and health benefits have made it very popular. Bananas are climacteric fruits that ripen after harvesting. It has been reported that the endogenous substances in bananas change significantly during the ripening process. This study focused on levels of gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD), an enzyme that catalyzes the synthesis of GABA, which reportedly fluctuates during the ripening stage. Previous studies have shown that GAD expression is associated with banana ripening; however, changes in its distribution during ripening have not been verified. This study aimed to clarify the relationship between GABA and GAD during ripening of ethylene-treated bananas. Visualization of the localization of endogenous GABA and GAD was performed using mass spectrometry imaging. To visualize GAD reaction, a glutamate-d3 (labeled substrate) was supplied to the sample, and a GABA-d3 (labeled product) was regarded as the localization of the enzymatic reaction. Liquid chromatography-mass spectrometry was also used to confirm the amount of GABA and activity of the GAD. This will allow us to clarify the direct relationship between GABA and GAD and to understand the role of the GAD reaction in phytohormones.
Collapse
Affiliation(s)
- Shiho Ishimoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan; Osaka University Shimadzu Omics Innovation Research Laboratory, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan; Osaka University Shimadzu Omics Innovation Research Laboratory, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan.
| |
Collapse
|
4
|
Liu T, Nan M, Zhang S, Qin H, Zhao Z, Liu S, Mao J. Characterization of seselopsis tianschanica schischk polysaccharide ( STSP) and its application in developing a functional fermented beverage with highland barle. Food Chem X 2024; 24:101988. [PMID: 39670258 PMCID: PMC11635712 DOI: 10.1016/j.fochx.2024.101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024] Open
Abstract
This study aimed to isolate and characterize Seselopsis Tianschanica Schischk Polysaccharide (STSP), a natural functional ingredient, and to develop a compound fermented beverage of nutritional and health combining STSP with highland barley. Firstly, the STSP was isolated and characterized with ultrasound-assisted enzymatic method and chromatography, and analyzed the structural features of polysaccharide STSP-1. Then, a compounded fermented beverage integrating Tibet STSP and highland barley was created, with technology and flavor substances studied. Five kinds of organic acids, 18 kinds of amino acids, and 57 kinds of volatile flavor compounds were determined by GC-MS and HPLC, and quantified significantly enhancing the overall flavor profile of the compound drink-fermented. Moreover, it exhibited higher hydroxyl radical scavenging capacity (IC50 value was 42.68 μL) compared to conventional highland barley drink. This research is expected to provide a theoretical foundation for the utilization of STSP in the functional food industry and other industries.
Collapse
Affiliation(s)
- Tiantian Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 31200, China
| | - Mujia Nan
- Basic Department, University of Tibetan Medicine, Lhasa 850000, China
| | - Suyi Zhang
- Luzhou Laojiao Group Co. Ltd, Luzhou 646000, China
| | - Hui Qin
- Luzhou Laojiao Group Co. Ltd, Luzhou 646000, China
| | - Zesu Zhao
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuangping Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jian Mao
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Kabała K, Janicka M. Relationship between the GABA Pathway and Signaling of Other Regulatory Molecules. Int J Mol Sci 2024; 25:10749. [PMID: 39409078 PMCID: PMC11476557 DOI: 10.3390/ijms251910749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
GABA (gamma-aminobutyric acid) is an amino acid whose numerous regulatory functions have been identified in animal organisms. More and more research indicate that in plants, this molecule is also involved in controlling basic growth and development processes. As recent studies have shown, GABA plays an essential role in triggering plant resistance to unfavorable environmental factors, which is particularly important in the era of changing climate. The main sources of GABA in plant cells are glutamic acid, converted in the GABA shunt pathway, and polyamines subjected to oxidative degradation. The action of GABA is often related to the activity of other messengers, including phytohormones, polyamines, NO, H2O2, or melatonin. GABA can function as an upstream or downstream element in the signaling pathways of other regulators, acting synergistically or antagonistically with them to control cellular processes. Understanding the role of GABA and its interactions with other signaling molecules may be important for developing crop varieties with characteristics that enable adaptation to a changing environment.
Collapse
Affiliation(s)
| | - Małgorzata Janicka
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
| |
Collapse
|
6
|
Gupta S, Kaur R, Upadhyay A, Chauhan A, Tripathi V. Unveiling the secrets of abiotic stress tolerance in plants through molecular and hormonal insights. 3 Biotech 2024; 14:252. [PMID: 39345964 PMCID: PMC11427653 DOI: 10.1007/s13205-024-04083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Phytohormones are signaling substances that control essential elements of growth, development, and reactions to environmental stress. Drought, salt, heat, cold, and floods are a few examples of abiotic factors that have a significant impact on plant development and survival. Complex sensing, signaling, and stress response systems are needed for adaptation and tolerance to such pressures. Abscisic acid (ABA) is a key phytohormone that regulates stress responses. It interacts with the jasmonic acid (JA) and salicylic acid (SA) signaling pathways to direct resources toward reducing the impacts of abiotic stressors rather than fighting against pathogens. Under exposure to nanoparticles, the plant growth hormones also function as molecules that regulate stress and are known to be involved in a variety of signaling cascades. Reactive oxygen species (ROS) are detected in excess while under stress, and nanoparticles can control their formation. Understanding the way these many signaling pathways interact in plants will tremendously help breeders create food crops that can survive in deteriorating environmental circumstances brought on by climate change and that can sustain or even improve crop production. Recent studies have demonstrated that phytohormones, such as the traditional auxins, cytokinins, ethylene, and gibberellins, as well as more recent members like brassinosteroids, jasmonates, and strigolactones, may prove to be significant metabolic engineering targets for creating crop plants that are resistant to abiotic stress. In this review, we address recent developments in current understanding regarding the way various plant hormones regulate plant responses to abiotic stress and highlight instances of hormonal communication between plants during abiotic stress signaling. We also discuss new insights into plant gene and growth regulation mechanisms during stress, phytohormone engineering, nanotechnological crosstalk of phytohormones, and Plant Growth-Promoting Rhizobacteria's Regulatory Powers (PGPR) via the involvement of phytohormones.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Anshu Upadhyay
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Arjun Chauhan
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Vishal Tripathi
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002 Uttarakhand India
| |
Collapse
|
7
|
Badiali C, Beccaccioli M, Sciubba F, Chronopoulou L, Petruccelli V, Palocci C, Reverberi M, Miccheli A, Pasqua G, Brasili E. Pterostilbene-loaded PLGA nanoparticles alter phenylpropanoid and oxylipin metabolism in Solanum lycopersicum L. leaves. Sci Rep 2024; 14:21941. [PMID: 39304705 DOI: 10.1038/s41598-024-73313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Due to the fast-changing global climate, conventional agricultural systems have to deal with more unpredictable and harsh environmental conditions leading to compromise food production. The application of phytonanotechnology can ensure safer and more sustainable crop production, allowing the target-specific delivery of bioactive molecules with great and partially explored positive effects for agriculture, such as an increase in crop production and plant pathogen reduction. In this study, the effect of free pterostilbene (PTB) and poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) loaded with pterostilbene was investigated on Solanum lycopersicum L. metabolism. An untargeted NMR-based metabolomics approach was used to examine primary and secondary metabolism whereas a targeted HPLC-MS/MS-based approach was used to explore the impact on defense response subjected to anti-oxidant effect of PTB, such as free fatty acids, oxylipins and them impact on hormone biosynthesis, in particular salicylic and jasmonic acid. In tomato leaves after treatment with PTB and PLGA NPs loaded with PTB (NPs + PTB), both NPs + PTB and free PTB treatments increased GABA levels in tomato leaves. In addition, a decrease of quercetin-3-glucoside associated with the increase in caffeic acid was observed suggesting a shift in secondary metabolism towards the biosynthesis of phenylpropanoids and other phenolic compounds. An increase of behenic acid (C22:0) and a remodulation of oxylipin metabolism deriving from the linoleic acid (i.e. 9-HpODE, 13-HpODE and 9-oxo-ODE) and linolenic acid (9-HOTrE and 9-oxoOTrE) after treatment with PLGA NPs and PLGA NPs + PTB were also found as a part of mechanisms of plant redox modulation. To the best of our knowledge, this is the first study showing the role of PLGA nanoparticles loaded with pterostilbene in modulating leaf metabolome and physiology in terms of secondary metabolites, fatty acids, oxylipins and hormones. In perspective, PLGA NPs loaded with PTB could be used to reshape the metabolic profile to allow plant to react more quickly to stresses.
Collapse
Affiliation(s)
- Camilla Badiali
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Marzia Beccaccioli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Rome, Italy
| | - Valerio Petruccelli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Rome, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Elisa Brasili
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
8
|
Jan R, Asif S, Asaf S, Lubna, Khan Z, Khan W, Kim KM. Gamma-aminobutyric acid treatment promotes resistance against Sogatella furcifera in rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1419999. [PMID: 39091314 PMCID: PMC11291254 DOI: 10.3389/fpls.2024.1419999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024]
Abstract
The Sogatella furcifera (Horváth) (Homoptera: Delphacidae) is a white-backed planthopper (WBPH) that causes "hopper burn" in rice, resulting in severe yield loss. Gamma-aminobutyric acid (GABA) is a well-known neurotransmitter that inhibits neurotransmission in insects by binding to specific receptors. In this study, we investigated the potential role of GABA in modulating rice resistance to WBPH and evaluated possible defense mechanisms. The experiment was conducted in green house in pots consist of four groups: control, GABA-treated, WBPH-infested, and WBPH-infested treated with GABA. Among the various tested concentration of GABA, 15 mM GABA was applied as a single treatment in water. The treatment was administered one week before WBPH infestation. The results revealed that 15 mM GABA treatment strongly increased WBPH resistance. A plate-based assay indicated that direct application of 15 mM GABA increased the mortality rate of WBPH and increased the damage recovery rate in rice plants. We found that GABA treatment increased the activation of antioxidant enzymes and reduced the reactive oxygen species content and malondialdehyde contents, and reduced the damage rate caused by WBPH. Interestingly, GABA-supplemented plants infested with WBPH exhibited increased phenylalanine ammonia-lyase and pathogenesis-related (PR) genes expression levels. GABA induced the accumulation of abscisic acid (ABA) and salicylic acid (SA) and enhanced the stomata closure and reduced leaf vessels to reduce water conductance during WBPH stress. Furthermore, we found that GABA application to the plant induced the expression of Jasmonic acid (JA) biosynthesis genes (LOX, AOS, AOC, and OPR) and melatonin biosynthesis-related genes (TDC, T5H, ASMT, and SNAT). Our study suggested that GABA increases resistance against WBPH infestation by regulating antioxidant defense system, TCA cycle regulation, phytohormonal signaling, and PR gene regulation.
Collapse
Affiliation(s)
- Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Zakirullah Khan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Waleed Khan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
9
|
Naik B, Kumar V, Rizwanuddin S, Mishra S, Kumar V, Saris PEJ, Khanduri N, Kumar A, Pandey P, Gupta AK, Khan JM, Rustagi S. Biofortification as a solution for addressing nutrient deficiencies and malnutrition. Heliyon 2024; 10:e30595. [PMID: 38726166 PMCID: PMC11079288 DOI: 10.1016/j.heliyon.2024.e30595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Malnutrition, defined as both undernutrition and overnutrition, is a major global health concern affecting millions of people. One possible way to address nutrient deficiency and combat malnutrition is through biofortification. A comprehensive review of the literature was conducted to explore the current state of biofortification research, including techniques, applications, effectiveness and challenges. Biofortification is a promising strategy for enhancing the nutritional condition of at-risk populations. Biofortified varieties of basic crops, including rice, wheat, maize and beans, with elevated amounts of vital micronutrients, such as iron, zinc, vitamin A and vitamin C, have been successfully developed using conventional and advanced technologies. Additionally, the ability to specifically modify crop genomes to improve their nutritional profiles has been made possible by recent developments in genetic engineering, such as CRISPR-Cas9 technology. The health conditions of people have been shown to improve and nutrient deficiencies were reduced when biofortified crops were grown. Particularly in environments with limited resources, biofortification showed considerable promise as a long-term and economical solution to nutrient shortages and malnutrition. To fully exploit the potential of biofortified crops to enhance public health and global nutrition, issues such as consumer acceptance, regulatory permitting and production and distribution scaling up need to be resolved. Collaboration among governments, researchers, non-governmental organizations and the private sector is essential to overcome these challenges and promote the widespread adoption of biofortification as a key part of global food security and nutrition strategies.
Collapse
Affiliation(s)
- Bindu Naik
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
- School of Agriculture, Graphic Hill University, Clement Town, Dehradun, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Sheikh Rizwanuddin
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00100, Helsinki, Finland
| | - Naresh Khanduri
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Akhilesh Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Piyush Pandey
- Soil and Environment Microbiology Laboratory, Department of Microbiology, Assam University, Silchur, 788011, Assam, India
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh, 11451, Saudi Arabia
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
10
|
Ahmad S, Fariduddin Q. "Deciphering the enigmatic role of gamma-aminobutyric acid (GABA) in plants: Synthesis, transport, regulation, signaling, and biological roles in interaction with growth regulators and abiotic stresses.". PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108502. [PMID: 38492486 DOI: 10.1016/j.plaphy.2024.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
Gamma-aminobutyric acid (GABA) is an amino acid with a four-carbon structure, widely distributed in various organisms. It exists as a zwitterion, possessing both positive and negative charges, enabling it to interact with other molecules and participate in numerous physiological processes. GABA is widely distributed in various plant cell compartments such as cytoplasm mitochondria, vacuoles, peroxisomes, and plastids. GABA is primarily synthesized from glutamate using glutamate decarboxylase and participates in the GABA shunt within mitochondria, regulating carbon and nitrogen metabolism in plants The transport of GABA is regulated by several intracellular and intercellular transporters such as aluminium-activated malate transporters (ALMTs), GABA transporters (GATs), bidirectional amino acid transporters (BATs), and cationic amino acid transporters (CATs). GABA plays a vital role in cellular transformations, gene expression, cell wall modifications, and signal transduction in plants. Recent research has unveiled the role of GABA as a signaling molecule in plants, regulating stomatal movement and pollen tube growth. This review provides insights into multifaceted impact of GABA on physiological and biochemical traits in plants, including cellular communication, pH regulation, Krebs cycle circumvention, and carbon and nitrogen equilibrium. The review highlights involvement of GABA in improving the antioxidant defense system of plants, mitigating levels of reactive oxygen species under normal and stressed conditions. Moreover, the interplay of GABA with other plant growth regulators (PGRs) have also been explored.
Collapse
Affiliation(s)
- Saif Ahmad
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
11
|
Lee SY, Kang B, Venkatesh J, Lee JH, Lee S, Kim JM, Back S, Kwon JK, Kang BC. Development of virus-induced genome editing methods in Solanaceous crops. HORTICULTURE RESEARCH 2024; 11:uhad233. [PMID: 38222822 PMCID: PMC10782499 DOI: 10.1093/hr/uhad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/08/2023] [Accepted: 11/01/2023] [Indexed: 01/16/2024]
Abstract
Genome editing (GE) using CRISPR/Cas systems has revolutionized plant mutagenesis. However, conventional transgene-mediated GE methods have limitations due to the time-consuming generation of stable transgenic lines expressing the Cas9/single guide RNA (sgRNA) module through tissue cultures. Virus-induced genome editing (VIGE) systems have been successfully employed in model plants, such as Arabidopsis thaliana and Nicotiana spp. In this study, we developed two VIGE methods for Solanaceous plants. First, we used the tobacco rattle virus (TRV) vector to deliver sgRNAs into a transgenic tomato (Solanum lycopersicum) line of cultivar Micro-Tom expressing Cas9. Second, we devised a transgene-free GE method based on a potato virus X (PVX) vector to deliver Cas9 and sgRNAs. We designed and cloned sgRNAs targeting Phytoene desaturase in the VIGE vectors and determined optimal conditions for VIGE. We evaluated VIGE efficiency through deep sequencing of the target gene after viral vector inoculation, detecting 40.3% and 36.5% mutation rates for TRV- and PVX-mediated GE, respectively. To improve editing efficiency, we applied a 37°C heat treatment, which increased the editing efficiency by 33% to 46% and 56% to 76% for TRV- and PVX-mediated VIGE, respectively. To obtain edited plants, we subjected inoculated cotyledons to tissue culture, yielding successful editing events. We also demonstrated that PVX-mediated GE can be applied to other Solanaceous crops, such as potato (Solanum tuberosum) and eggplant (Solanum melongena). These simple and highly efficient VIGE methods have great potential for generating genome-edited plants in Solanaceous crops.
Collapse
Affiliation(s)
- Seo-Young Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Bomi Kang
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jelli Venkatesh
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Joung-Ho Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seyoung Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung-Min Kim
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungki Back
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Liu M, Bai M, Yue J, Fei X, Xia X. Integrating transcriptome and metabolome to explore the growth-promoting mechanisms of GABA in blueberry plantlets. FRONTIERS IN PLANT SCIENCE 2023; 14:1319700. [PMID: 38186593 PMCID: PMC10768180 DOI: 10.3389/fpls.2023.1319700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/11/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024]
Abstract
Tissue culture technology is the main method for the commercial propagation of blueberry plants, but blueberry plantlets grow slowly and have long growth cycles under in vitro propagation, resulting in low propagation efficiency. In addition, the long culturing time can also result in reduced nutrient content in the culture medium, and the accumulation of toxic and harmful substances that can lead to weak growth for the plantlets or browning and vitrification, which ultimately can seriously reduce the quality of the plantlets. Gamma-aminobutyric acid (GABA) is a four-carbon non-protein amino acid that can improve plant resistance to various stresses and promote plant growth, but the effects of its application and mechanism in tissue culture are still unclear. In this study, the effects of GABA on the growth of in vitro blueberry plantlets were analyzed following the treatment of the plantlets with GABA. In addition, the GABA-treated plantlets were also subjected to a comparative transcriptomic and metabolomic analysis. The exogenous application of GABA significantly promoted growth and improved the quality of the blueberry plantlets. In total, 2,626 differentially expressed genes (DEGs) and 377 differentially accumulated metabolites (DAMs) were detected by comparison of the control and GABA-treated plantlets. Most of the DEGs and DAMs were involved in carbohydrate metabolism and biosynthesis of secondary metabolites. The comprehensive analysis results indicated that GABA may promote the growth of blueberry plantlets by promoting carbon metabolism and nitrogen assimilation, as well as increasing the accumulation of secondary metabolites such as flavonoids, steroids and terpenes.
Collapse
Affiliation(s)
| | | | | | | | - Xiuying Xia
- Plant Cell and Genetic Engineering Laboratory, School of Biological Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
13
|
Lee Y, Cho G, Kim DR, Kwak YS. Analysis of Endophytic Bacterial Communities and Investigation of Core Taxa in Apple Trees. THE PLANT PATHOLOGY JOURNAL 2023; 39:397-408. [PMID: 37550985 PMCID: PMC10412964 DOI: 10.5423/ppj.oa.05.2023.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/05/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 08/09/2023]
Abstract
ire blight disease, caused by Erwinia amylovora, is a devastating affliction in apple cultivation worldwide. Chemical pesticides have exhibited limited effectiveness in controlling the disease, and biological control options for treating fruit trees are limited. Therefore, a relatively large-scale survey is necessary to develop microbial agents for apple trees. Here we collected healthy apple trees from across the country to identify common and core bacterial taxa. We analyzed the endophytic bacterial communities in leaves and twigs and discovered that the twig bacterial communities were more conserved than those in the leaves, regardless of the origin of the sample. This finding indicates that specific endophytic taxa are consistently present in healthy apple trees and may be involved in vital functions such as disease prevention and growth. Furthermore, we compared the community metabolite pathway expression rates of these endophyte communities with those of E. amylovora infected apple trees and discovered that the endophyte communities in healthy apple trees not only had similar community structures but also similar metabolite pathway expression rates. Additionally, Pseudomonas and Methylobacterium-Methylorobrum were the dominant taxa in all healthy apple trees. Our findings provide valuable insights into the potential roles of endophytes in healthy apple trees and inform the development of strategies for enhancing apple growth and resilience. Moreover, the similarity in cluster structure and pathway analysis between healthy orchards was mutually reinforcing, demonstrating the power of microbiome analysis as a tool for identifying factors that contribute to plant health.
Collapse
Affiliation(s)
- Yejin Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828,
Korea
| | - Gyeongjun Cho
- Division of Agricultural Microbiology, Department of Agricultural Biology, National Institute of Agriculture Science, Rural Development Administration, Wanju 55365,
Korea
| | - Da-Ran Kim
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Youn-Sig Kwak
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828,
Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
14
|
Moing A, Berton T, Roch L, Diarrassouba S, Bernillon S, Arrivault S, Deborde C, Maucourt M, Cabasson C, Bénard C, Prigent S, Jacob D, Gibon Y, Lemaire-Chamley M. Multi-omics quantitative data of tomato fruit unveils regulation modes of least variable metabolites. BMC PLANT BIOLOGY 2023; 23:365. [PMID: 37479985 PMCID: PMC10362748 DOI: 10.1186/s12870-023-04370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/18/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND The composition of ripe fruits depends on various metabolites which content evolves greatly throughout fruit development and may be influenced by the environment. The corresponding metabolism regulations have been widely described in tomato during fruit growth and ripening. However, the regulation of other metabolites that do not show large changes in content have scarcely been studied. RESULTS We analysed the metabolites of tomato fruits collected on different trusses during fruit development, using complementary analytical strategies. We identified the 22 least variable metabolites, based on their coefficients of variation. We first verified that they had a limited functional link with the least variable proteins and transcripts. We then posited that metabolite contents could be stabilized through complex regulations and combined their data with the quantitative proteome or transcriptome data, using sparse partial-least-square analyses. This showed shared regulations between several metabolites, which interestingly remained linked to early fruit development. We also examined regulations in specific metabolites using correlations with individual proteins and transcripts, which revealed that a stable metabolite does not always correlate with proteins and transcripts of its known related pathways. CONCLUSIONS The regulation of the least variable metabolites was then interpreted regarding their roles as hubs in metabolic pathways or as signalling molecules.
Collapse
Affiliation(s)
- Annick Moing
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Thierry Berton
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Léa Roch
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Salimata Diarrassouba
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Present Address: Laboratoire de Recherche en Sciences Végétales, UMR 5546 UPS/CNRS, Auzeville- Tolosane, F-31320 France
| | - Stéphane Bernillon
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Present Address: INRAE, Mycologie et Sécurité des Aliments, UR 1264, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, am Muehlenberg 14476, Potsdam-Golm, Germany
| | - Catherine Deborde
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Present Address: INRAE, UR1268 BIA, Centre INRAE Pays de Loire – Nantes, Nantes, F-44000 France
- Present address: INRAE, BIBS Facility, Centre INRAE Pays de Loire – Nantes, Nantes, F-44000 France
| | - Mickaël Maucourt
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Cécile Cabasson
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Camille Bénard
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Sylvain Prigent
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Daniel Jacob
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Yves Gibon
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Martine Lemaire-Chamley
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| |
Collapse
|
15
|
Zayabaatar E, Huang CM, Pham MT, Ganzorig B, Wang SM, Chen CC. Bacillus amyloliquefaciens Increases the GABA in Rice Seed for Upregulation of Type I Collagen in the Skin. Curr Microbiol 2023; 80:128. [PMID: 36877314 DOI: 10.1007/s00284-023-03233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2022] [Accepted: 02/16/2023] [Indexed: 03/07/2023]
Abstract
Biosynthesis of gamma-aminobutyric acid (GABA) can be achieved by naturally occurring microorganisms with the advantages of cost-effectiveness and safety. In this study, Bacillus amyloliquefaciens EH-9 strain (B. amyloliquefaciens EH-9), a soil bacterium, was used to promote the accumulation of GABA in germinated rice seed. Further, the topical application of supernatant from rice seed co-cultivated with soil B. amyloliquefaciens EH-9 can significantly increase the production of type I collagen (COL1) in the dorsal skin of mice. The knocking down of the GABA-A receptor (GABAA) significantly reduced the production of COL1 in the NIH/3T3 cells and in the dorsal skin of mice. This result suggests that topical application of GABA can promote the biosynthesis of COL1 via its interaction with the GABAA receptor in the dorsal skin of mice. In summary, our findings illustrate for the first time that soil B. amyloliquefaciens EH-9 elicits GABA production in germinated rice seed to upregulate the formation of COL1 in the dorsal skin of mice. This study is translational because the result shows a potential remedy for skin aging by stimulating COL1 synthesis using biosynthetic GABA associated with B. amyloliquefaciens EH-9.
Collapse
Affiliation(s)
- Enkhbat Zayabaatar
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Chun-Ming Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, 32001, Taiwan.,Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Minh Tan Pham
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Binderiya Ganzorig
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Sung-Ming Wang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Chun-Chuan Chen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, 32001, Taiwan.
| |
Collapse
|
16
|
Chevilly S, Dolz-Edo L, Blanca J, Yenush L, Mulet JM. Identification of Distinctive Primary Metabolites Influencing Broccoli ( Brassica oleracea, var. Italica) Taste. Foods 2023; 12:foods12020339. [PMID: 36673431 PMCID: PMC9857596 DOI: 10.3390/foods12020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Broccoli (Brassica oleracea L. var. Italica Plenck) is a cruciferous crop that is considered to be a good source of micronutrients. Better taste is a main objective for breeding, as consumers are demanding novel cultivars suited for a healthy diet, but ones that are more palatable. This study aimed to identify primary metabolites related to cultivars with better taste according to a consumer panel. For this purpose, we performed a complete primary metabolomic profile of 20 different broccoli cultivars grown in the field and contrasted the obtained data with the results of a consumer panel which evaluated the taste of the same raw buds. A statistical analysis was conducted to find primary metabolites correlating with better score in the taste panels. According to our results, sugar content is not a distinctive factor for taste in broccoli. The accumulation of the amino acids leucine, lysine and alanine, together with Myo-inositol, negatively affected taste, while a high content of γ-aminobutyric acid (GABA) is a distinctive trait for cultivars scoring high in the consumer panels. A Principal Component Analysis (PCA) allowed us to define three different groups according to the metabolomic profile of the 20 broccoli cultivars studied. Our results suggest molecular traits that could be useful as distinctive markers to predict better taste in broccoli or to design novel biotechnological or classical breeding strategies for improving broccoli taste.
Collapse
Affiliation(s)
- Sergio Chevilly
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Laura Dolz-Edo
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - José Blanca
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, COMAV, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - José M. Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
- Correspondence: ; Tel.: +34-96-387-7775
| |
Collapse
|
17
|
Heli Z, Hongyu C, Dapeng B, Yee Shin T, Yejun Z, Xi Z, Yingying W. Recent advances of γ-aminobutyric acid: Physiological and immunity function, enrichment, and metabolic pathway. Front Nutr 2022; 9:1076223. [PMID: 36618705 PMCID: PMC9813243 DOI: 10.3389/fnut.2022.1076223] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
γ-aminobutyric acid (GABA) is a non-protein amino acid which naturally and widely occurs in animals, plants, and microorganisms. As the chief inhibitory neurotransmitter in the central nervous system of mammals, it has become a popular dietary supplement and has promising application in food industry. The current article reviews the most recent literature regarding the physiological functions, preparation methods, enrichment methods, metabolic pathways, and applications of GABA. This review sheds light on developing GABA-enriched plant varieties and food products, and provides insights for efficient production of GABA through synthetic biology approaches.
Collapse
Affiliation(s)
- Zhou Heli
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Hongyu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Bao Dapeng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China,National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Tan Yee Shin
- Faculty of Science and Mushroom Research Centre, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Zhong Yejun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Zhang Xi
- BannerBio Nutraceuticals Inc., Shenzhen, China
| | - Wu Yingying
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China,*Correspondence: Wu Yingying,
| |
Collapse
|
18
|
Fusco GM, Burato A, Pentangelo A, Cardarelli M, Nicastro R, Carillo P, Parisi M. Can Microbial Consortium Applications Affect Yield and Quality of Conventionally Managed Processing Tomato? PLANTS (BASEL, SWITZERLAND) 2022; 12:14. [PMID: 36616143 PMCID: PMC9824734 DOI: 10.3390/plants12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Three commercial microbial-based biostimulants containing fungi (arbuscular mycorrhizae and Trichoderma spp.) and other microrganisms (plant growth-promoting bacteria and yeasts) were applied on a processing tomato crop in a two-year field experiment in southern Italy. The effects of the growing season and the microorganism-based treatments on the yield, technological traits and functional quality of the tomato fruits were assessed. The year of cultivation affected yield (with a lower fruit weight, higher marketable to total yield ratio and higher percentage of total defective fruits in 2020) and technological components (higher dry matter, titratable acidity, total soluble solids content in 2020). During the first year of the trial, the consortia-based treatments enhanced the soluble solids content (+10.02%) compared to the untreated tomato plants. The sucrose and lycopene content were affected both by the microbial treatments and the growing season (greater values found in 2021 with respect to 2020). The year factor also significantly affected the metabolite content, except for tyrosine, essential (EAA) and branched-chain amino acids (BCAAs). Over the two years of the field trial, FID-consortium enhanced the content of proteins (+53.71%), alanine (+16.55%), aspartic acid (+31.13%), γ-aminobutyric acid (GABA) (+76.51%), glutamine (+55.17%), glycine (+28.13%), monoethanolamine (MEA) (+19.57%), total amino acids (TAA) (+33.55), EAA (+32.56%) and BCAAs (+45.10%) compared to the control. Our findings highlighted the valuable effect of the FID microbial inoculant in boosting several primary metabolites (proteins and amino acids) in the fruits of the processing tomato crop grown under southern Italian environmental conditions, although no effect on the yield and its components was appreciated.
Collapse
Affiliation(s)
- Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Andrea Burato
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Alfonso Pentangelo
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Mariateresa Cardarelli
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Rosalinda Nicastro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Mario Parisi
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
19
|
Fernandes PMB, Favaratto L, Fernandes AAR, Vicien C, Capalbo DMF, Zerbini FM. To become more sustainable organic agriculture needs genome editing technology. Front Bioeng Biotechnol 2022; 10:912793. [PMID: 36061445 PMCID: PMC9437244 DOI: 10.3389/fbioe.2022.912793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
| | - Luíza Favaratto
- Biotechnology Core, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Carmen Vicien
- Faculty of Agronomy, University of Buenos Aires and Institute for Scientific Cooperation in Environment and Health, Buenos Aires, Argentina
| | | | | |
Collapse
|
20
|
Sun Y, Mehmood A, Battino M, Xiao J, Chen X. Enrichment of Gamma-aminobutyric acid in foods: From conventional methods to innovative technologies. Food Res Int 2022; 162:111801. [DOI: 10.1016/j.foodres.2022.111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2022] [Revised: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022]
|
21
|
Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. BIOLOGY 2022; 11:biology11020239. [PMID: 35205105 PMCID: PMC8869745 DOI: 10.3390/biology11020239] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The research outlined in this review paper discusses potential health benefits associated with a diet enriched with tomatoes and tomato products. This includes details of previous studies investigating the anticancer properties of tomatoes, protection against cardiovascular and neurodegenerative diseases and diabetes, maintenance of a healthy gut microbiome, and improved skin health, fertility, immune response, and exercise recovery. The specific parts of a tomato fruit that contribute these health benefits are also outlined. The potential disadvantages to a tomato-rich diet are detailed, especially the consumption of supplements that contain compounds found in tomatoes, such as lycopene. This review also discusses how the cultivation of tomato plants can affect the nutritional value of the fruit harvested. Different environmental growing conditions such as light intensity, growing media, and temperature are explained in terms of the impact they have on the quality of fruit, its nutrient content, and hence the potential health benefits acquired from eating the fruit. Abstract This review outlines the health benefits associated with the regular consumption of tomatoes and tomato products. The first section provides a detailed account of the horticultural techniques that can impact the quality of the fruit and its nutritional properties, including water availability, light intensity, temperature, and growing media. The next section provides information on the components of tomato that are likely to contribute to its health effects. The review then details some of the health benefits associated with tomato consumption, including anticancer properties, cardiovascular and neurodegenerative diseases and skin health. This review also discusses the impact tomatoes can have on the gut microbiome and associated health benefits, including reducing the risk of inflammatory bowel diseases. Other health benefits of eating tomatoes are also discussed in relation to effects on diabetes, the immune response, exercise recovery, and fertility. Finally, this review also addresses the negative effects that can occur as a result of overconsumption of tomato products and lycopene supplements.
Collapse
|
22
|
Shelp BJ. From plant biology research to technology transfer and knowledge extension: improving food quality and mitigating environmental impacts. Facets (Ott) 2022. [DOI: 10.1139/facets-2022-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Academic scientists face an unpredictable path from plant biology research to real-life application. Fundamental studies of γ-aminobutyrate and carotenoid metabolism, control of Botrytis infection, and the uptake and distribution of mineral nutrients illustrate that most academic research in plant biology could lead to innovative solutions for food, agriculture, and the environment. The time to application depends on various factors such as the fundamental nature of the scientific questions, the development of enabling technologies, the research priorities of funding agencies, the existence of competitive research, the willingness of researchers to become engaged in commercial activities, and ultimately the insight and creativity of the researchers. Applied research is likely to be adopted more rapidly by industry than basic research, so academic scientists engaged in basic research are less likely to participate in science commercialization. It is argued that the merit of Discovery Grant applications to the Natural Sciences and Engineering Research Council (NSERC) of Canada should not be evaluated for their potential impact on policy and (or) technology. Matching industry funds in Canada rarely support the search for knowledge. Therefore, NSERC Discovery Grants should fund basic research in its entirety.
Collapse
Affiliation(s)
- Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
23
|
Hoshikawa K, Pham D, Ezura H, Schafleitner R, Nakashima K. Genetic and Molecular Mechanisms Conferring Heat Stress Tolerance in Tomato Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:786688. [PMID: 35003175 PMCID: PMC8739973 DOI: 10.3389/fpls.2021.786688] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 05/17/2023]
Abstract
Climate change is a major threat to global food security. Changes in climate can directly impact food systems by reducing the production and genetic diversity of crops and their wild relatives, thereby restricting future options for breeding improved varieties and reducing the ability to adapt crops to future challenges. The global surface temperature is predicted to rise by an average of 0.3°C during the next decade, and the Paris Agreement (Paris Climate Accords) aims to limit global warming to below an average of 2°C, preferably to 1.5°C compared to pre-industrial levels. Even if the goal of the Paris Agreement can be met, the predicted rise in temperatures will increase the likelihood of extreme weather events, including heatwaves, making heat stress (HS) a major global abiotic stress factor for many crops. HS can have adverse effects on plant morphology, physiology, and biochemistry during all stages of vegetative and reproductive development. In fruiting vegetables, even moderate HS reduces fruit set and yields, and high temperatures may result in poor fruit quality. In this review, we emphasize the effects of abiotic stress, especially at high temperatures, on crop plants, such as tomatoes, touching upon key processes determining plant growth and yield. Specifically, we investigated the molecular mechanisms involved in HS tolerance and the challenges of developing heat-tolerant tomato varieties. Finally, we discuss a strategy for effectively improving the heat tolerance of vegetable crops.
Collapse
Affiliation(s)
- Ken Hoshikawa
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
- Vegetable Diversity and Improvement, World Vegetable Center, Tainan, Taiwan
| | - Dung Pham
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Hiroshi Ezura
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | | | - Kazuo Nakashima
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| |
Collapse
|
24
|
Liu Q, Yang F, Zhang J, Liu H, Rahman S, Islam S, Ma W, She M. Application of CRISPR/Cas9 in Crop Quality Improvement. Int J Mol Sci 2021; 22:4206. [PMID: 33921600 PMCID: PMC8073294 DOI: 10.3390/ijms22084206] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
The various crop species are major agricultural products and play an indispensable role in sustaining human life. Over a long period, breeders strove to increase crop yield and improve quality through traditional breeding strategies. Today, many breeders have achieved remarkable results using modern molecular technologies. Recently, a new gene-editing system, named the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, has also succeeded in improving crop quality. It has become the most popular tool for crop improvement due to its versatility. It has accelerated crop breeding progress by virtue of its precision in specific gene editing. This review summarizes the current application of CRISPR/Cas9 technology in crop quality improvement. It includes the modulation in appearance, palatability, nutritional components and other preferred traits of various crops. In addition, the challenge in its future application is also discussed.
Collapse
Affiliation(s)
- Qier Liu
- Institute of Agricultural Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Fan Yang
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Jingjuan Zhang
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Hang Liu
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Shanjida Rahman
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Shahidul Islam
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Wujun Ma
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Maoyun She
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| |
Collapse
|
25
|
Rosa-Martínez E, Adalid AM, Alvarado LE, Burguet R, García-Martínez MD, Pereira-Dias L, Casanova C, Soler E, Figàs MR, Plazas M, Prohens J, Soler S. Variation for Composition and Quality in a Collection of the Resilient Mediterranean 'de penjar' Long Shelf-Life Tomato Under High and Low N Fertilization Levels. FRONTIERS IN PLANT SCIENCE 2021; 12:633957. [PMID: 33897723 PMCID: PMC8058473 DOI: 10.3389/fpls.2021.633957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/26/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
The 'de penjar' tomato (Solanum lycopersicum L.) is a group of local varieties from the Spanish Mediterranean region carrying the alc mutation, which provides long shelf-life. Their evolution under low-input management practices has led to the selection of resilient genotypes to adverse conditions. Here we present the first evaluation on nutritional fruit composition of a collection of 44 varieties of 'de penjar' tomato under two N fertilization levels, provided by doses of manure equivalent to 162 kg N ha-1 in the high N treatment and 49 kg N ha-1 in the low N treatment. Twenty-seven fruit composition and quality traits, as well as plant yield and SPAD value, were evaluated. A large variation was observed, with lycopene being the composition trait with the highest relative range of variation (over 4-fold) under both N treatments, and significant differences among varieties were detected for all traits. While yield and most quality traits were not affected by the reduction in N fertilization, fruits from the low N treatment had, on average, higher values for hue (5.9%) and lower for fructose (-11.5%), glucose (-15.8%), and total sweetness index (-12.9%). In addition, lycopene and β-carotene presented a strongly significant genotype × N input interaction. Local varieties had higher values than commercial varieties for traits related to the ratio of sweetness to acidity and for vitamin C, which reinforces the appreciation for their organoleptic and nutritional quality. Highest-yielding varieties under both conditions displayed wide variation in the composition and quality profiles, which may allow the selection of specific ideotypes with high quality under low N conditions. These results revealed the potential of 'de penjar' varieties as a genetic resource in breeding for low N inputs and improving the organoleptic and nutritional tomato fruit quality.
Collapse
Affiliation(s)
- Elena Rosa-Martínez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Ana M. Adalid
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Luis E. Alvarado
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Resurrección Burguet
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - María D. García-Martínez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Leandro Pereira-Dias
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Cristina Casanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Elena Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - María R. Figàs
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | | | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Salvador Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
26
|
Li L, Dou N, Zhang H, Wu C. The versatile GABA in plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1862565. [PMID: 33404284 PMCID: PMC7889023 DOI: 10.1080/15592324.2020.1862565] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/23/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 05/19/2023]
Abstract
Gamma-aminobutyric acid (GABA) is a ubiquitous four-carbon, non-protein amino acid. GABA has been widely studied in animal central nervous systems, where it acts as an inhibitory neurotransmitter. In plants, it is metabolized through the GABA shunt pathway, a bypass of the tricarboxylic acid (TCA) cycle. Additionally, it can be synthesized through the polyamine metabolic pathway. GABA acts as a signal in Agrobacterium tumefaciens-mediated plant gene transformation and in plant development, especially in pollen tube elongation (to enter the ovule), root growth, fruit ripening, and seed germination. It is accumulated during plant responses to environmental stresses and pathogen and insect attacks. A high concentration of GABA elevates plant stress tolerance by improving photosynthesis, inhibiting reactive oxygen species (ROS) generation, activating antioxidant enzymes, and regulating stomatal opening in drought stress. The transporters of GABA in plants are reviewed in this work. We summarize the recent research on GABA function and transporters with the goal of providing a review of GABA in plants.
Collapse
Affiliation(s)
- Li Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, Shandong, China
| | - Na Dou
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, Shandong, China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, Shandong, China
| | - Chunxia Wu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, Shandong, China
| |
Collapse
|