1
|
Brejon Lamartinière E, Tremble K, Dentinger BTM, Dasmahapatra KK, Hoffman JI. Runs of homozygosity reveal contrasting histories of inbreeding across global lineages of the edible porcini mushroom, Boletus edulis. Mol Ecol 2024; 33:e17470. [PMID: 39034770 DOI: 10.1111/mec.17470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
Inbreeding, the mating of individuals that are related through common ancestry, is of central importance in evolutionary and conservation biology due to its impacts on individual fitness and population dynamics. However, while advanced genomic approaches have revolutionised the study of inbreeding in animals, genomic studies of inbreeding are rare in plants and lacking in fungi. We investigated global patterns of inbreeding in the prized edible porcini mushroom Boletus edulis using 225 whole genomes from seven lineages distributed across the northern hemisphere. Genomic inbreeding was quantified using runs of homozygosity (ROHs). We found appreciable variation both among and within lineages, with some individuals having over 20% of their genomes in ROHs. Much of this variation could be explained by a combination of elevation and latitude, and to a lesser extent by predicted habitat suitability during the last glacial maximum. In line with this, the majority of ROHs were short, reflecting ancient common ancestry dating back approximately 200-1700 generations ago, while longer ROHs indicative of recent common ancestry (less than approximately 50 generations ago) were infrequent. Our study reveals the inbreeding legacy of major climatic events in a widely distributed forest mutualist, aligning with prevailing theories and empirical studies of the impacts of historical glaciation events on the dominant forest tree species of the northern hemisphere.
Collapse
Affiliation(s)
- Etienne Brejon Lamartinière
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Keaton Tremble
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Bryn T M Dentinger
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Natural History Museum of Utah, Salt Lake City, Utah, USA
| | | | - Joseph I Hoffman
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Bielefeld, Münster, Germany
- British Antarctic Survey, Cambridge, UK
| |
Collapse
|
2
|
Minamikawa MF, Kunihisa M, Moriya S, Shimizu T, Inamori M, Iwata H. Genomic prediction and genome-wide association study using combined genotypic data from different genotyping systems: application to apple fruit quality traits. HORTICULTURE RESEARCH 2024; 11:uhae131. [PMID: 38979105 PMCID: PMC11228094 DOI: 10.1093/hr/uhae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/25/2024] [Indexed: 07/10/2024]
Abstract
With advances in next-generation sequencing technologies, various marker genotyping systems have been developed for genomics-based approaches such as genomic selection (GS) and genome-wide association study (GWAS). As new genotyping platforms are developed, data from different genotyping platforms must be combined. However, the potential use of combined data for GS and GWAS has not yet been clarified. In this study, the accuracy of genomic prediction (GP) and the detection power of GWAS increased for most fruit quality traits of apples when using combined data from different genotyping systems, Illumina Infinium single-nucleotide polymorphism array and genotyping by random amplicon sequencing-direct (GRAS-Di) systems. In addition, the GP model, which considered the inbreeding effect, further improved the accuracy of the seven fruit traits. Runs of homozygosity (ROH) islands overlapped with the significantly associated regions detected by the GWAS for several fruit traits. Breeders may have exploited these regions to select promising apples by breeders, increasing homozygosity. These results suggest that combining genotypic data from different genotyping platforms benefits the GS and GWAS of fruit quality traits in apples. Information on inbreeding could be beneficial for improving the accuracy of GS for fruit traits of apples; however, further analysis is required to elucidate the relationship between the fruit traits and inbreeding depression (e.g. decreased vigor).
Collapse
Affiliation(s)
- Mai F Minamikawa
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi, Inage, Chiba, Chiba 263-8522, Japan
- Laboratory of Biometry and Bioinformatics, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Miyuki Kunihisa
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Shigeki Moriya
- Institute of Fruit Tree and Tea Science, NARO, 92-24 Shimokuriyagawa Nabeyashiki, Morioka, Iwate 020-0123, Japan
| | - Tokurou Shimizu
- Institute of Fruit Tree and Tea Science, NARO, Okitsu Nakacho, Shimizu, Shizuoka 424-0292, Japan
| | - Minoru Inamori
- Laboratory of Biometry and Bioinformatics, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Hiroyoshi Iwata
- Laboratory of Biometry and Bioinformatics, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Barragan AC, Collenberg M, Schwab R, Kersten S, Kerstens MHL, Požárová D, Bezrukov I, Bemm F, Kolár F, Weigel D. Deleterious phenotypes in wild Arabidopsis arenosa populations are common and linked to runs of homozygosity. G3 (BETHESDA, MD.) 2024; 14:jkad290. [PMID: 38124484 PMCID: PMC10917499 DOI: 10.1093/g3journal/jkad290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/07/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
In this study, we aimed to systematically assess the frequency at which potentially deleterious phenotypes appear in natural populations of the outcrossing model plant Arabidopsis arenosa, and to establish their underlying genetics. For this purpose, we collected seeds from wild A. arenosa populations and screened over 2,500 plants for unusual phenotypes in the greenhouse. We repeatedly found plants with obvious phenotypic defects, such as small stature and necrotic or chlorotic leaves, among first-generation progeny of wild A. arenosa plants. Such abnormal plants were present in about 10% of maternal sibships, with multiple plants with similar phenotypes in each of these sibships, pointing to a genetic basis of the observed defects. A combination of transcriptome profiling, linkage mapping and genome-wide runs of homozygosity patterns using a newly assembled reference genome indicated a range of underlying genetic architectures associated with phenotypic abnormalities. This included evidence for homozygosity of certain genomic regions, consistent with alleles that are identical by descent being responsible for these defects. Our observations suggest that deleterious alleles with different genetic architectures are segregating at appreciable frequencies in wild A. arenosa populations.
Collapse
Affiliation(s)
- A Cristina Barragan
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- The Sainsbury Laboratory, Norwich NR4 7UH, UK
| | - Maximilian Collenberg
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Catalent, 73614 Schorndorf, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Sonja Kersten
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Institute of Plant Breeding, University of Hohenheim, 70599 Stuttgart, Germany
| | - Merijn H L Kerstens
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Department of Plant Developmental Biology, Wageningen University and Research, 6708 PB, Wageningen, Netherlands
| | - Doubravka Požárová
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic
- The MAMA AI, 100 00 Prague, Czech Republic
| | - Ilja Bezrukov
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- KWS Saat, 37574 Einbeck, Germany
| | - Filip Kolár
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Hu Y, Yu Z, Gao X, Liu G, Zhang Y, Šmarda P, Guo Q. Genetic diversity, population structure, and genome-wide association analysis of ginkgo cultivars. HORTICULTURE RESEARCH 2023; 10:uhad136. [PMID: 37564270 PMCID: PMC10410194 DOI: 10.1093/hr/uhad136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/02/2023] [Indexed: 08/12/2023]
Abstract
Ginkgo biloba is an economically valuable tree worldwide. The species has nearly become extinct during the Quaternary, which has likely resulted in reduction of its genetic variability. The genetic variability is now conserved in few natural populations in China and a number of cultivars that are, however, derived from a few ancient trees, helping the species survive in China through medieval times. Despite the recent interest in ginkgo, however, detailed knowledge of its genetic diversity, conserved in cultivated trees and cultivars, has remained poor. This limits efficient conservation of its diversity as well as efficient use of the existing germplasm resources. Here we performed genotyping-by-sequencing (GBS) on 102 cultivated germplasms of ginkgo collected to explore their genetic structure, kinship, and inbreeding prediction. For the first time in ginkgo, a genome-wide association analysis study (GWAS) was used to attempt gene mapping of seed traits. The results showed that most of the germplasms did not show any obvious genetic relationship. The size of the ginkgo germplasm population expanded significantly around 1500 years ago during the Sui and Tang dynasties. Classification of seed cultivars based on a phylogenetic perspective does not support the current classification criteria based on phenotype. Twenty-four candidate genes were localized after performing GWAS on the seed traits. Overall, this study reveals the genetic basis of ginkgo seed traits and provides insights into its cultivation history. These findings will facilitate the conservation and utilization of the domesticated germplasms of this living fossil plant.
Collapse
Affiliation(s)
- Yaping Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyan Yu
- Coconut Research Institute of Chinese Academy of Tropical Agricultural Science, Wenchang, Hainan 571339, China
| | - Xiaoge Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ganping Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yun Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Koltlářská 2, Brno 61137, Czech Republic
| | - Qirong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Hewett AM, Stoffel MA, Peters L, Johnston SE, Pemberton JM. Selection, recombination and population history effects on runs of homozygosity (ROH) in wild red deer (Cervus elaphus). Heredity (Edinb) 2023; 130:242-250. [PMID: 36801920 PMCID: PMC10076382 DOI: 10.1038/s41437-023-00602-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
The distribution of runs of homozygosity (ROH) may be shaped by a number of interacting processes such as selection, recombination and population history, but little is known about the importance of these mechanisms in shaping ROH in wild populations. We combined an empirical dataset of >3000 red deer genotyped at >35,000 genome-wide autosomal SNPs and evolutionary simulations to investigate the influence of each of these factors on ROH. We assessed ROH in a focal and comparison population to investigate the effect of population history. We investigated the role of recombination using both a physical map and a genetic linkage map to search for ROH. We found differences in ROH distribution between both populations and map types indicating that population history and local recombination rate have an effect on ROH. Finally, we ran forward genetic simulations with varying population histories, recombination rates and levels of selection, allowing us to further interpret our empirical data. These simulations showed that population history has a greater effect on ROH distribution than either recombination or selection. We further show that selection can cause genomic regions where ROH is common, only when the effective population size (Ne) is large or selection is particularly strong. In populations having undergone a population bottleneck, genetic drift can outweigh the effect of selection. Overall, we conclude that in this population, genetic drift resulting from a historical population bottleneck is most likely to have resulted in the observed ROH distribution, with selection possibly playing a minor role.
Collapse
Affiliation(s)
- Anna M Hewett
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| | - Martin A Stoffel
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Lucy Peters
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Susan E Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Josephine M Pemberton
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| |
Collapse
|
6
|
Shaikh TM, Rahman M, Smith T, Anderson JV, Chao WS, Horvath DP. Homozygosity mapping identified loci and candidate genes responsible for freezing tolerance in Camelina sativa. THE PLANT GENOME 2023:e20318. [PMID: 36896462 DOI: 10.1002/tpg2.20318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Homozygosity mapping is an effective tool for detecting genomic regions responsible for a given trait when the phenotype is controlled by a limited number of dominant or co-dominant loci. Freezing tolerance is a major attribute in agricultural crops such as camelina. Previous studies indicated that freezing tolerance differences between a tolerant (Joelle) and susceptible (CO46) variety of camelina were controlled by a small number of dominant or co-dominant genes. We performed whole genome homozygosity mapping to identify markers and candidate genes responsible for freezing tolerance difference between these two genotypes. A total of 28 F3 RILs were sequenced to ∼30× coverage, and parental lines were sequenced to >30-40× coverage with Pacific Biosciences high fidelity technology and 60× coverage using Illumina whole genome sequencing. Overall, about 126k homozygous single nucleotide polymorphism markers were identified that differentiate both parents. Moreover, 617 markers were also homozygous in F3 families fixed for freezing tolerance/susceptibility. All these markers mapped to two contigs forming a contiguous stretch of chromosome 11. The homozygosity mapping detected 9 homozygous blocks among the selected markers and 22 candidate genes with strong similarity to regions in or near the homozygous blocks. Two such genes were differentially expressed during cold acclimation in camelina. The largest block contained a cold-regulated plant thionin and a putative rotamase cyclophilin 2 gene previously associated with freezing resistance in arabidopsis (Arabidopsis thaliana). The second largest block contains several cysteine-rich RLK genes and a cold-regulated receptor serine/threonine kinase gene. We hypothesize that one or more of these genes may be primarily responsible for freezing tolerance differences in camelina varieties.
Collapse
Affiliation(s)
- T M Shaikh
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Mukhlesur Rahman
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Timothy Smith
- USDA/ARS, Genetics and Animal Breeding, Clay Center, NE, USA
| | - James V Anderson
- USDA/ARS, Sunflower and Plant Biology Research Unit, Edward T, Schafer Agricultural Research Center, Fargo, ND, USA
| | - Wun S Chao
- USDA/ARS, Sunflower and Plant Biology Research Unit, Edward T, Schafer Agricultural Research Center, Fargo, ND, USA
| | - David P Horvath
- USDA/ARS, Sunflower and Plant Biology Research Unit, Edward T, Schafer Agricultural Research Center, Fargo, ND, USA
| |
Collapse
|
7
|
Du J, Ge C, Wang T, Wang J, Ni Z, Xiao S, Zhao F, Zhao M, Qiao Y. Combined transcriptomic and proteomic analysis reveals multiple pathways involved in self-pollen tube development and the potential roles of FviYABBY1 in self-incompatibility in Fragaria viridis. FRONTIERS IN PLANT SCIENCE 2022; 13:927001. [PMID: 36186066 PMCID: PMC9515988 DOI: 10.3389/fpls.2022.927001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Fragaria viridis exhibits S-RNase-based gametophytic self-incompatibility, in which S-RNase is the major factor inhibiting pollen tube growth. However, the pathways involved in and the immediate causes of the inhibition of pollen tube growth remain unknown. Here, interactive RNA sequencing and proteome analysis revealed changes in the transcriptomic and proteomic profiles of F. viridis styles harvested at 0 and 24 h after self-pollination. A total of 2,181 differentially expressed genes and 200 differentially abundant proteins were identified during the pollen development stage of self-pollination. Differentially expressed genes and differentially abundant proteins associated with self-incompatible pollination were further mined, and multiple pathways were found to be involved. Interestingly, the expression pattern of the transcription factor FviYABBY1, which is linked to polar growth, differed from those of other genes within the same family. Specifically, FviYABBY1 expression was extremely high in pollen, and its expression trend in self-pollinated styles was consistent with that of S-RNase. Furthermore, FviYABBY1 interacted with S-RNase in a non-S haplotype way. Therefore, FviYABBY1 affects the expression of polar growth-related genes in self-pollen tubes and is positively regulated by S-RNase.
Collapse
Affiliation(s)
- Jianke Du
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Institute of Horticulture Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chunfeng Ge
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Tao Wang
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Wang
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhiyou Ni
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Xiao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fengli Zhao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mizhen Zhao
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yushan Qiao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|