1
|
Sferra G, Fantozzi D, Scippa GS, Trupiano D. Key Pathways and Genes of Arabidopsis thaliana and Arabidopsis halleri Roots under Cadmium Stress Responses: Differences and Similarities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091793. [PMID: 37176850 PMCID: PMC10180823 DOI: 10.3390/plants12091793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) is among the world's major health concerns, as it renders soils unsuitable and unsafe for food and feed production. Phytoremediation has the potential to remediate Cd-polluted soils, but efforts are still needed to develop a deep understanding of the processes underlying it. In this study, we performed a comprehensive analysis of the root response to Cd stress in A. thaliana, which can phytostabilize Cd, and in A. halleri, which is a Cd hyperaccumulator. Suitable RNA-seq data were analyzed by WGCNA to identify modules of co-expressed genes specifically associated with Cd presence. The results evidenced that the genes of the hyperaccumulator A. halleri mostly associated with the Cd presence are finely regulated (up- and downregulated) and related to a general response to chemical and other stimuli. Additionally, in the case of A. thaliana, which can phytostabilize metals, the genes upregulated during Cd stress are related to a general response to chemical and other stimuli, while downregulated genes are associated with functions which, affecting root growth and development, determine a deep modification of the organ both at the cellular and physiological levels. Furthermore, key genes of the Cd-associated modules were identified and confirmed by differentially expressed gene (DEG) detection and external knowledge. Together, key functions and genes shed light on differences and similarities among the strategies that the plants use to cope with Cd and may be considered as possible targets for future research.
Collapse
Affiliation(s)
- Gabriella Sferra
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Daniele Fantozzi
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | | | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| |
Collapse
|
2
|
The Course of Mechanical Stress: Types, Perception, and Plant Response. BIOLOGY 2023; 12:biology12020217. [PMID: 36829495 PMCID: PMC9953051 DOI: 10.3390/biology12020217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Mechanical stimuli, together with the corresponding plant perception mechanisms and the finely tuned thigmomorphogenetic response, has been of scientific and practical interest since the mid-17th century. As an emerging field, there are many challenges in the research of mechanical stress. Indeed, studies on different plant species (annual/perennial) and plant organs (stem/root) using different approaches (field, wet lab, and in silico/computational) have delivered insufficient findings that frequently impede the practical application of the acquired knowledge. Accordingly, the current work distils existing mechanical stress knowledge by bringing in side-by-side the research conducted on both stem and roots. First, the various types of mechanical stress encountered by plants are defined. Second, plant perception mechanisms are outlined. Finally, the different strategies employed by the plant stem and roots to counteract the perceived mechanical stresses are summarized, depicting the corresponding morphological, phytohormonal, and molecular characteristics. The comprehensive literature on both perennial (woody) and annual plants was reviewed, considering the potential benefits and drawbacks of the two plant types, which allowed us to highlight current gaps in knowledge as areas of interest for future research.
Collapse
|
3
|
Tang Y, Lu L, Huang X, Zhao D, Tao J. The herbaceous peony transcription factor WRKY41a promotes secondary cell wall thickening to enhance stem strength. PLANT PHYSIOLOGY 2023; 191:428-445. [PMID: 36305685 PMCID: PMC9806655 DOI: 10.1093/plphys/kiac507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Stem bending or lodging caused by insufficient stem strength is an important limiting factor for plant production. Secondary cell walls play a crucial role in plant stem strength, but whether WRKY transcription factors can positively modulate secondary cell wall thickness are remain unknown. Here, we characterized a WRKY transcription factor PlWRKY41a from herbaceous peony (Paeonia lactiflora), which was highly expressed in stems. PlWRKY41a functioned as a nucleus-localized transcriptional activator and enhanced stem strength by positively modulating secondary cell wall thickness. Moreover, PlWRKY41a bound to the promoter of the XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE4 (PlXTH4) and activated the expression of PlXTH4. PlXTH4-overexpressing tobacco (Nicotiana tabacum) had thicker secondary cell walls, resulting in enhanced stem strength, while PlXTH4-silenced P. lactiflora had thinner secondary cell walls, showing decreased stem strength. Additionally, PlWRKY41a directly interacted with PlMYB43 to form a protein complex, and their interaction induced the expression of PlXTH4. These data support that the PlMYB43-PlWRKY41a protein complex can directly activate the expression of PlXTH4 to enhance stem strength by modulating secondary cell wall thickness in P. lactiflora. The results will enhance our understanding of the formation mechanism of stem strength and provide a candidate gene to improve stem straightness in plants.
Collapse
Affiliation(s)
- Yuhan Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Lili Lu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Xingqi Huang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
4
|
Dimitrova A, Sferra G, Scippa GS, Trupiano D. Network-Based Analysis to Identify Hub Genes Involved in Spatial Root Response to Mechanical Constrains. Cells 2022; 11:3121. [PMID: 36231084 PMCID: PMC9564363 DOI: 10.3390/cells11193121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Previous studies report that the asymmetric response, observed along the main poplar woody bent root axis, was strongly related to both the type of mechanical forces (compression or tension) and the intensity of force displacement. Despite a large number of targets that have been proposed to trigger this asymmetry, an understanding of the comprehensive and synergistic effect of the antistress spatially related pathways is still lacking. Recent progress in the bioinformatics area has the potential to fill these gaps through the use of in silico studies, able to investigate biological functions and pathway overlaps, and to identify promising targets in plant responses. Presently, for the first time, a comprehensive network-based analysis of proteomic signatures was used to identify functions and pivotal genes involved in the coordinated signalling pathways and molecular activities that asymmetrically modulate the response of different bent poplar root sectors and sides. To accomplish this aim, 66 candidate proteins, differentially represented across the poplar bent root sides and sectors, were grouped according to their abundance profile patterns and mapped, together with their first neighbours, on a high-confidence set of interactions from STRING to compose specific cluster-related subnetworks (I-VI). Successively, all subnetworks were explored by a functional gene set enrichment analysis to identify enriched gene ontology terms. Subnetworks were then analysed to identify the genes that are strongly interconnected with other genes (hub gene) and, thus, those that have a pivotal role in the bent root asymmetric response. The analysis revealed novel information regarding the response coordination, communication, and potential signalling pathways asymmetrically activated along the main root axis, delegated mainly to Ca2+ (for new lateral root formation) and ROS (for gravitropic response and lignin accumulation) signatures. Furthermore, some of the data indicate that the concave side of the bent sector, where the mechanical forces are most intense, communicates to the other (neighbour and distant) sectors, inducing spatially related strategies to ensure water uptake and accompanying cell modification. This information could be critical for understanding how plants maintain and improve their structural integrity-whenever and wherever it is necessary-in natural mechanical stress conditions.
Collapse
Affiliation(s)
| | | | | | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| |
Collapse
|
5
|
Zhao D, Luan Y, Shi W, Tang Y, Huang X, Tao J. Melatonin enhances stem strength by increasing lignin content and secondary cell wall thickness in herbaceous peony. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5974-5991. [PMID: 35436332 DOI: 10.1093/jxb/erac165] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/16/2022] [Indexed: 05/15/2023]
Abstract
Cut flower quality is severely restrained by stem bending due to low stem strength. Melatonin has been shown to function in many aspects of plant growth and development, yet whether it can enhance stem strength, and the corresponding underlying mechanisms remain unclear. We investigated the role of melatonin in enhancement of stem strength in herbaceous peony (Paeonia lactiflora Pall.) by applying exogenous melatonin and changing endogenous melatonin biosynthesis. Endogenous melatonin content positively correlated with lignin content and stem strength in various P. lactiflora cultivars. Supplementation with exogenous melatonin significantly enhanced stem strength by increasing lignin content and the S/G lignin compositional ratio, up-regulating lignin biosynthetic gene expression. Moreover, overexpression of TRYPTOPHAN DECARBOXYLASE GENE (TDC) responsible for the first committed step of melatonin biosynthesis in tobacco, significantly increased endogenous melatonin, which further increased the S/G ratio and stem strength. In contrast, silencing PlTDC in P. lactiflora decreased endogenous melatonin, the S/G ratio and stem strength. Finally, manipulating the expression of CAFFEIC ACID O-METHYLTRANSFERASE GENE (COMT1), which is involved in both melatonin and lignin biosynthesis, showed even greater effects on melatonin, the S/G ratio and stem strength. Our results suggest that melatonin has a positive regulatory effect on P. lactiflora stem strength.
Collapse
Affiliation(s)
- Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yuting Luan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wenbo Shi
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yuhan Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xingqi Huang
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Overexpression of EgrIAA20 from Eucalyptus grandis, a Non-Canonical Aux/ IAA Gene, Specifically Decouples Lignification of the Different Cell-Types in Arabidopsis Secondary Xylem. Int J Mol Sci 2022; 23:ijms23095068. [PMID: 35563457 PMCID: PMC9100763 DOI: 10.3390/ijms23095068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
Abstract
Wood (secondary xylem) formation is regulated by auxin, which plays a pivotal role as an integrator of developmental and environmental cues. However, our current knowledge of auxin-signaling during wood formation is incomplete. Our previous genome-wide analysis of Aux/IAAs in Eucalyptus grandis showed the presence of the non-canonical paralog member EgrIAA20 that is preferentially expressed in cambium. We analyzed its cellular localization using a GFP fusion protein and its transcriptional activity using transactivation assays, and demonstrated its nuclear localization and strong auxin response repressor activity. In addition, we functionally tested the role of EgrIAA20 by constitutive overexpression in Arabidopsis to investigate for phenotypic changes in secondary xylem formation. Transgenic Arabidopsis plants overexpressing EgrIAA20 were smaller and displayed impaired development of secondary fibers, but not of other wood cell types. The inhibition in fiber development specifically affected their cell wall lignification. We performed yeast-two-hybrid assays to identify EgrIAA20 protein partners during wood formation in Eucalyptus, and identified EgrIAA9A, whose ortholog PtoIAA9 in poplar is also known to be involved in wood formation. Altogether, we showed that EgrIAA20 is an important auxin signaling component specifically involved in controlling the lignification of wood fibers.
Collapse
|
7
|
Adaptation of the Root System to the Environment. FORESTS 2022. [DOI: 10.3390/f13040595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The plant fine roots system (i [...]
Collapse
|
8
|
Plant Growth Regulators in Tree Rooting. PLANTS 2022; 11:plants11060805. [PMID: 35336687 PMCID: PMC8949883 DOI: 10.3390/plants11060805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
Trees are long-lived organisms with complex life cycles that provide enormous benefits both in natural and cultivated stands [...]
Collapse
|
9
|
Meristematic Connectome: A Cellular Coordinator of Plant Responses to Environmental Signals? Cells 2021; 10:cells10102544. [PMID: 34685524 PMCID: PMC8533771 DOI: 10.3390/cells10102544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Mechanical stress in tree roots induces the production of reaction wood (RW) and the formation of new branch roots, both functioning to avoid anchorage failure and limb damage. The vascular cambium (VC) is the factor responsible for the onset of these responses as shown by their occurrence when all primary tissues and the root tips are removed. The data presented confirm that the VC is able to evaluate both the direction and magnitude of the mechanical forces experienced before coordinating the most fitting responses along the root axis whenever and wherever these are necessary. The coordination of these responses requires intense crosstalk between meristematic cells of the VC which may be very distant from the place where the mechanical stress is first detected. Signaling could be facilitated through plasmodesmata between meristematic cells. The mechanism of RW production also seems to be well conserved in the stem and this fact suggests that the VC could behave as a single structure spread along the plant body axis as a means to control the relationship between the plant and its environment. The observation that there are numerous morphological and functional similarities between different meristems and that some important regulatory mechanisms of meristem activity, such as homeostasis, are common to several meristems, supports the hypothesis that not only the VC but all apical, primary and secondary meristems present in the plant body behave as a single interconnected structure. We propose to name this structure “meristematic connectome” given the possibility that the sequence of meristems from root apex to shoot apex could represent a pluricellular network that facilitates long-distance signaling in the plant body. The possibility that the “meristematic connectome” could act as a single structure active in adjusting the plant body to its surrounding environment throughout the life of a plant is now proposed.
Collapse
|