1
|
Md Nasir NAN, Zakarya IA, Kamaruddin SA. Azolla pinnata and Lemna minor as comparative hyperaccumulators for livestock wastewater treatment: morpho-physiological and genetic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66360-66371. [PMID: 39625624 DOI: 10.1007/s11356-024-35598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/15/2024] [Indexed: 12/21/2024]
Abstract
The potential of two different aquatic macrophytes, Azolla pinnata R.Br. and Lemna minor L., to treat livestock wastewater through phytoremediation was investigated. The physiological analysis includes the removal efficiency of manganese (Mn) from livestock wastewater by AAS. Morphological observation was performed by using a scanning electron microscope (SEM) and visual observation. RAPD analysis was applied to observe the DNA profile. It was observed that the removal efficiency of Mn was higher in L. minor with a 92% removal rate, while in A. pinnata RE, it was at a 77% rate. The higher removal rate of Mn by L. minor showed that plants had a significant impact on the removal of heavy metals, with a p ≤ 0.05. Retention time and the removal of heavy metals were found to be positively correlated. As early as 24 h after exposure to livestock wastewater (LW), the stomata on the leaves of A. pinnata and L. minor have both shrunk, and the root surfaces have shortened. According to the RAPD analysis, A. pinnata only shows an increase in band intensities and no polymorphism, whereas L. minor has 19% polymorphisms that indicate higher tolerance as hyperaccumulators. As a conclusion, L. minor showed no signs of necrosis and performed more efficiently as a hyperaccumulator in LW, with a higher removal efficiency.
Collapse
Affiliation(s)
| | - Irnis Azura Zakarya
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Sustainable Environment Research Group (SERG), Centre of Excellence Geopolymer and Green Technologies (CEGeoGTech), Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Saadi Ahmad Kamaruddin
- School of Quantitative Sciences, Universiti Utara Malaysia, 06010, Sintok, Kedah, Malaysia
| |
Collapse
|
2
|
Iqbal B, Ahmad N, Li G, Jalal A, Khan AR, Zheng X, Naeem M, Du D. Unlocking plant resilience: Advanced epigenetic strategies against heavy metal and metalloid stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112265. [PMID: 39277048 DOI: 10.1016/j.plantsci.2024.112265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The escalating threat of heavy metal and metalloid stress on plant ecosystems requires innovative strategies to strengthen plant resilience and ensure agricultural sustainability. This review provides important insights into the advanced epigenetic pathways to improve plant tolerance to toxic heavy metals and metalloid stress. Epigenetic modifications, including deoxyribonucleic acid (DNA) methylation, histone modifications, and small ribonucleic acid (RNA) engineering, offer innovative avenues for tailoring plant responses to mitigate the impact of heavy metal and metalloid stress. Technological advancements in high-throughput genome sequencing and functional genomics have unraveled the complexities of epigenetic regulation in response to heavy metal and metalloid contamination. Recent strides in this field encompass identifying specific epigenetic markers associated with stress resilience, developing tools for editing the epigenome, and integrating epigenetic data into breeding programs for stress-resistant crops. Understanding the dynamic interaction between epigenetics and stress responses holds immense potential to engineer resilient crops that thrive in environments contaminated with heavy metals and metalloids. Eventually, harnessing epigenetic strategies presents a promising trajectory toward sustainable agriculture in the face of escalating environmental challenges. Plant epigenomics expands, the potential for sustainable agriculture by implementing advanced epigenetic approaches becomes increasingly evident. These developments lay the foundation for understanding the growing significance of epigenetics in plant stress biology and its potential to mitigate the detrimental effects of heavy metal and metalloid pollution on global agriculture.
Collapse
Affiliation(s)
- Babar Iqbal
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanlin Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Arshad Jalal
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; School of Engineering, Department of Plant Health, Rural Engineering and Soils, São Paulo State University - UNESP-FEIS, Ilha Solteira, São Paulo 15385-000, Brazil
| | - Ali Raza Khan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaojun Zheng
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Chakrabarty D. Editorial: Molecular mechanisms of metal toxicity and transcriptional/post-transcriptional regulation in plant model systems. FRONTIERS IN PLANT SCIENCE 2024; 15:1502021. [PMID: 39665110 PMCID: PMC11632460 DOI: 10.3389/fpls.2024.1502021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Affiliation(s)
- Debasis Chakrabarty
- Molecular Biology and Biotechnology, National Botanical Research Institute (CSIR), Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
El-Sappah AH, Zhu Y, Huang Q, Chen B, Soaud SA, Abd Elhamid MA, Yan K, Li J, El-Tarabily KA. Plants' molecular behavior to heavy metals: from criticality to toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1423625. [PMID: 39280950 PMCID: PMC11392792 DOI: 10.3389/fpls.2024.1423625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 09/18/2024]
Abstract
The contamination of soil and water with high levels of heavy metals (HMs) has emerged as a significant obstacle to agricultural productivity and overall crop quality. Certain HMs, although serving as essential micronutrients, are required in smaller quantities for plant growth. However, when present in higher concentrations, they become very toxic. Several studies have shown that to balance out the harmful effects of HMs, complex systems are needed at the molecular, physiological, biochemical, cellular, tissue, and whole plant levels. This could lead to more crops being grown. Our review focused on HMs' resources, occurrences, and agricultural implications. This review will also look at how plants react to HMs and how they affect seed performance as well as the benefits that HMs provide for plants. Furthermore, the review examines HMs' transport genes in plants and their molecular, biochemical, and metabolic responses to HMs. We have also examined the obstacles and potential for HMs in plants and their management strategies.
Collapse
Affiliation(s)
- Ahmed H El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yumin Zhu
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Bo Chen
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Salma A Soaud
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Kuan Yan
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Asiminicesei DM, Fertu DI, Gavrilescu M. Impact of Heavy Metal Pollution in the Environment on the Metabolic Profile of Medicinal Plants and Their Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:913. [PMID: 38592933 PMCID: PMC10976221 DOI: 10.3390/plants13060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
The paper provides a comprehensive examination of heavy metal stress on medicinal plants, focusing on its impact on antioxidant capacity and biosynthetic pathways critical to their therapeutic potential. It explores the complex relationship between heavy metals and the physiological and biochemical responses of medicinal plants, highlighting how metal stress disrupts biosynthetic pathways, altering concentrations of secondary metabolites. This disruption may compromise the overall quality and efficacy of medicinal plants, requiring a holistic understanding of its cumulative impacts. Furthermore, the study discusses the potential of targeted genetic editing to enhance plant resilience against heavy metal stress by manipulating genes associated with antioxidant defenses. This approach represents a promising frontier in safeguarding medicinal plants in metal-contaminated environments. Additionally, the research investigates the role of phytohormone signaling in plant adaptive mechanisms to heavy metal stress, revealing its influence on biochemical and physiological responses, thereby adding complexity to plant adaptation. The study underscores the importance of innovative technologies and global cooperation in protecting medicinal plants' therapeutic potential and highlights the need for mitigation strategies to address heavy metal contamination effectively.
Collapse
Affiliation(s)
- Dana-Mihaela Asiminicesei
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
| | - Daniela Ionela Fertu
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Al. I. Cuza Street, 800002 Galati, Romania
| | - Maria Gavrilescu
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
6
|
Peñuela M, Finke J, Rocha C. Methylomes as key features for predicting recombination in some plant species. PLANT MOLECULAR BIOLOGY 2024; 114:25. [PMID: 38457042 PMCID: PMC10924001 DOI: 10.1007/s11103-023-01396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/27/2023] [Indexed: 03/09/2024]
Abstract
Knowing how chromosome recombination works is essential for plant breeding. It enables the design of crosses between different varieties to combine desirable traits and create new ones. This is because the meiotic crossovers between homologous chromatids are not purely random, and various strategies have been developed to describe and predict such exchange events. Recent studies have used methylation data to predict chromosomal recombination in rice using machine learning models. This approach proved successful due to the presence of a positive correlation between the CHH context cytosine methylation and recombination rates in rice chromosomes. This paper assesses the question if methylation can be used to predict recombination in four plant species: Arabidopsis, maize, sorghum, and tomato. The results indicate a positive association between CHH context methylation and recombination rates in certain plant species, with varying degrees of strength in their relationships. The CG and CHG methylation contexts show negative correlation with recombination. Methylation data was key effectively in predicting recombination in sorghum and tomato, with a mean determination coefficient of 0.65 ± 0.11 and 0.76 ± 0.05, respectively. In addition, the mean correlation values between predicted and experimental recombination rates were 0.83 ± 0.06 for sorghum and 0.90 ± 0.05 for tomato, confirming the significance of methylomes in both monocotyledonous and dicotyledonous species. The predictions for Arabidopsis and maize were not as accurate, likely due to the comparatively weaker relationships between methylation contexts and recombination, in contrast to sorghum and tomato, where stronger associations were observed. To enhance the accuracy of predictions, further evaluations using data sets closely related to each other might prove beneficial. In general, this methylome-based method holds great potential as a reliable strategy for predicting recombination rates in various plant species, offering valuable insights to breeders in their quest to develop novel and improved varieties.
Collapse
Affiliation(s)
- Mauricio Peñuela
- iÓMICAS, Facultad de Ingeniería y Ciencias, Pontificia Universidad Javeriana, 760031, Cali, Colombia.
| | - Jorge Finke
- iÓMICAS, Facultad de Ingeniería y Ciencias, Pontificia Universidad Javeriana, 760031, Cali, Colombia
| | - Camilo Rocha
- iÓMICAS, Facultad de Ingeniería y Ciencias, Pontificia Universidad Javeriana, 760031, Cali, Colombia
| |
Collapse
|
7
|
Raza A, Salehi H, Bashir S, Tabassum J, Jamla M, Charagh S, Barmukh R, Mir RA, Bhat BA, Javed MA, Guan DX, Mir RR, Siddique KHM, Varshney RK. Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity. PLANT CELL REPORTS 2024; 43:80. [PMID: 38411713 PMCID: PMC10899315 DOI: 10.1007/s00299-024-03153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.
Collapse
Affiliation(s)
- Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Hajar Salehi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Shanza Bashir
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Rutwik Barmukh
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Basharat Ahmad Bhat
- Department of Bio-Resources, Amar Singh College Campus, Cluster University Srinagar, Srinagar, JK, India
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Srinagar, Kashmir, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
8
|
Chmielowska-Bąk J, Searle IR, Wakai TN, Arasimowicz-Jelonek M. The role of epigenetic and epitranscriptomic modifications in plants exposed to non-essential metals. FRONTIERS IN PLANT SCIENCE 2023; 14:1278185. [PMID: 38111878 PMCID: PMC10726048 DOI: 10.3389/fpls.2023.1278185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023]
Abstract
Contamination of the soil with non-essential metals and metalloids is a serious problem in many regions of the world. These non-essential metals and metalloids are toxic to all organisms impacting crop yields and human health. Crop plants exposed to high concentrations of these metals leads to perturbed mineral homeostasis, decreased photosynthesis efficiency, inhibited cell division, oxidative stress, genotoxic effects and subsequently hampered growth. Plants can activate epigenetic and epitranscriptomic mechanisms to maintain cellular and organism homeostasis. Epigenetic modifications include changes in the patterns of cytosine and adenine DNA base modifications, changes in cellular non-coding RNAs, and remodeling histone variants and covalent histone tail modifications. Some of these epigenetic changes have been shown to be long-lasting and may therefore contribute to stress memory and modulated stress tolerance in the progeny. In the emerging field of epitranscriptomics, defined as chemical, covalent modifications of ribonucleotides in cellular transcripts, epitranscriptomic modifications are postulated as more rapid modulators of gene expression. Although significant progress has been made in understanding the plant's epigenetic changes in response to biotic and abiotic stresses, a comprehensive review of the plant's epigenetic responses to metals is lacking. While the role of epitranscriptomics during plant developmental processes and stress responses are emerging, epitranscriptomic modifications in response to metals has not been reviewed. This article describes the impact of non-essential metals and metalloids (Cd, Pb, Hg, Al and As) on global and site-specific DNA methylation, histone tail modifications and epitranscriptomic modifications in plants.
Collapse
Affiliation(s)
- Jagna Chmielowska-Bąk
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Iain Robert Searle
- Discipline of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Theophilus Nang Wakai
- Department of Biochemistry, Faculty of Science, University of Bamenda, Bambili, Cameroon
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
9
|
Anjitha KS, Sarath NG, Sameena PP, Janeeshma E, Shackira AM, Puthur JT. Plant response to heavy metal stress toxicity: the role of metabolomics and other omics tools. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:965-982. [PMID: 37995340 DOI: 10.1071/fp23145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Metabolomic investigations offers a significant foundation for improved comprehension of the adaptability of plants to reconfigure the key metabolic pathways and their response to changing climatic conditions. Their application to ecophysiology and ecotoxicology help to assess potential risks caused by the contaminants, their modes of action and the elucidation of metabolic pathways associated with stress responses. Heavy metal stress is one of the most significant environmental hazards affecting the physiological and biochemical processes in plants. Metabolomic tools have been widely utilised in the massive characterisation of the molecular structure of plants at various stages for understanding the diverse aspects of the cellular functioning underlying heavy metal stress-responsive mechanisms. This review emphasises on the recent progressions in metabolomics in plants subjected to heavy metal stresses. Also, it discusses the possibility of facilitating effective management strategies concerning metabolites for mitigating the negative impacts of heavy metal contaminants on the growth and productivity of plants.
Collapse
Affiliation(s)
- K S Anjitha
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O., Malappuram, Kerala 673635, India
| | - Nair G Sarath
- Department of Botany, Mar Athanasius College, Kothamangalam, Ernakulam, Kerala 686666, India
| | - P P Sameena
- Department of Botany, PSMO College, Tirurangadi, Malappuram, Kerala 676306, India
| | - Edappayil Janeeshma
- Department of Botany, MES KEVEEYAM College, Valanchery, Malappuram, Kerala 676552, India
| | - A M Shackira
- Department of Botany, Sir Syed College, Kannur University, Kannur, Kerala 670142, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O., Malappuram, Kerala 673635, India
| |
Collapse
|
10
|
Fang W, Fasano C, Perrella G. Unlocking the Secret to Higher Crop Yield: The Potential for Histone Modifications. PLANTS (BASEL, SWITZERLAND) 2023; 12:1712. [PMID: 37111933 PMCID: PMC10144255 DOI: 10.3390/plants12081712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Histone modifications are epigenetic mechanisms, termed relative to genetics, and they refer to the induction of heritable changes without altering the DNA sequence. It is widely known that DNA sequences precisely modulate plant phenotypes to adapt them to the changing environment; however, epigenetic mechanisms also greatly contribute to plant growth and development by altering chromatin status. An increasing number of recent studies have elucidated epigenetic regulations on improving plant growth and adaptation, thus making contributions to the final yield. In this review, we summarize the recent advances of epigenetic regulatory mechanisms underlying crop flowering efficiency, fruit quality, and adaptation to environmental stimuli, especially to abiotic stress, to ensure crop improvement. In particular, we highlight the major discoveries in rice and tomato, which are two of the most globally consumed crops. We also describe and discuss the applications of epigenetic approaches in crop breeding programs.
Collapse
Affiliation(s)
- Weiwei Fang
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, MI, Italy;
| | - Carlo Fasano
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Develoment, (ENEA), 75026 Rotondella, MT, Italy;
| | - Giorgio Perrella
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, MI, Italy;
| |
Collapse
|
11
|
Bölükbaşı E, Karakaş M. Modeling DNA Methylation Profiles and Epigenetic Analysis of Safflower ( Carthamus tinctorius L.) Seedlings Exposed to Copper Heavy Metal. TOXICS 2023; 11:255. [PMID: 36977020 PMCID: PMC10058885 DOI: 10.3390/toxics11030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Heavy metals are chemical elements with high density that can be toxic or poisonous even at low concentrations. They are widely distributed in the environment due to industrial activities, mining, pesticide use, automotive emissions and domestic wastes. This study aimed to investigate the toxic effects of copper (Cu) heavy metal on safflower plants in terms of genetic and epigenetic parameters. Safflower seeds were exposed to different concentrations of Cu heavy metal solution (20, 40, 80, 160, 320, 640, 1280 mg L-1) for three weeks, and changes in the genomic template stability (GTS) and methylation pattern in the root tissues were analyzed using PCR and coupled restriction enzyme digestion-random amplification (CRED-RA) techniques. The results indicated that high doses of Cu have genotoxic effects on the genome of safflower plants. Epigenetic analysis revealed four different methylation patterns, with the highest total methylation rate of 95.40% observed at a 20 mg L-1 concentration, and the lowest rate of 92.30% observed at 160 mg L-1. Additionally, the maximum percentage of non-methylation was detected at 80 mg L-1. These results suggest that changes in the methylation patterns can serve as an important mechanism of protection against Cu toxicity. Furthermore, safflower can be used as a biomarker to determine the pollution in soils contaminated with Cu heavy metal.
Collapse
Affiliation(s)
- Ekrem Bölükbaşı
- Department of Environmental Protection and Technologies, Suluova Vocational School, Amasya University, Amasya 05100, Türkiye
- Central Research Laboratory, Amasya University, Amasya 05100, Türkiye
| | - Mehmet Karakaş
- Department of Biology, Faculty of Science, Ankara University, Ankara 06100, Türkiye
| |
Collapse
|
12
|
Zhang H, Tang Y, Li Q, Zhao S, Zhang Z, Chen Y, Shen Z, Chen C. Genetic and epigenetic variation separately contribute to range expansion and local metalliferous habitat adaptation during invasions of Chenopodium ambrosioides into China. ANNALS OF BOTANY 2022; 130:1041-1056. [PMID: 36413156 PMCID: PMC9851312 DOI: 10.1093/aob/mcac139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIMS Invasive plants often colonize wide-ranging geographical areas with various local microenvironments. The specific roles of epigenetic and genetic variation during such expansion are still unclear. Chenopodium ambrosioides is a well-known invasive alien species in China that can thrive in metalliferous habitats. This study aims to comprehensively understand the effects of genetic and epigenetic variation on the successful invasion of C. ambrosioides. METHODS We sampled 367 individuals from 21 heavy metal-contaminated and uncontaminated sites with a wide geographical distribution in regions of China. We obtained environmental factors of these sampling sites, including 13 meteorological factors and the contents of four heavy metals in soils. Microsatellite markers were used to investigate the demographic history of C. ambrosioides populations in China. We also analysed the effect of epigenetic variation on metalliferous microhabitat adaptation using methylation-sensitive amplified polymorphism (MSAP) markers. A common garden experiment was conducted to compare heritable phenotypic variations among populations. KEY RESULTS Two distinct genetic clusters that diverged thousands of years ago were identified, suggesting that the eastern and south-western C. ambrosioides populations in China may have originated from independent introduction events without recombination. Genetic variation was shown to be a dominant determinant of phenotypic differentiation relative to epigenetic variation, and further affected the geographical distribution pattern of invasive C. ambrosioides. The global DNA unmethylation level was reduced in metalliferous habitats. Dozens of methylated loci were significantly associated with the heavy metal accumulation trait of C. ambrosioides and may contribute to coping with metalliferous microenvironments. CONCLUSIONS Our study of C. ambrosioides highlighted the dominant roles of genetic variation in large geographical range expansion and epigenetic variation in local metalliferous habitat adaptation.
Collapse
Affiliation(s)
- Hanchao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Yongwei Tang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Quanyuan Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Shangjun Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Zhou Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
- Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
- Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
- Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| |
Collapse
|
13
|
Shimalina NS, Pozolotina VN, Orekhova NA. Stress memory in two generations of Plantago major from radioactive and chemical contaminated areas after the cessation of exposure. Int J Radiat Biol 2022:1-11. [PMID: 36353750 DOI: 10.1080/09553002.2023.2146232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HYPOTHESIS The differences in viability, root length, and pro/antioxidant features of Plantago major seedlings identified in seed progeny formed in areas of radioactive and chemical contamination can persist in subsequent generations after the elimination of the stress. MATERIALS AND METHODS The seed mixtures of F1 generation were collected from P. major natural populations (P plants) growing for a long time in the East Ural Radioactive Trace, the Karabash Copper Smelter zone, and background area. The seeds of F2 generation were obtained from F1 generation plants grown on experimental plots with 'clean' agricultural background; F3 generation was grown from F2 generation on the same plots. The viability of seed progeny was estimated by survival rate and root length. Pro/antioxidant features were determined spectrophotometrically by malondialdehyde content, superoxide dismutase and catalase activities, and total content of low molecular weight antioxidants in seedlings. RESULTS AND CONCLUSIONS The hypothesis about the persistence of effects from chronic exposure to ionizing radiation and chemical contamination in the generations' sequence of P. major after the removal of stress was confirmed only partially. The data obtained indicated that changes in the prooxidant and antioxidant features of plants in response to low doses of ionizing radiation can persist for at least in two generations after the stress removal. In the case of long-term exposure to chemical contaminants, we observed the persistence of the effect in a succession of generations only on the morphological indicator of root length.
Collapse
Affiliation(s)
- Nadezhda S. Shimalina
- Laboratory of Population Radiobiology, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 Marta str. 202, Yekaterinburg 620144, Russia
| | - Vera N. Pozolotina
- Laboratory of Population Radiobiology, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 Marta str. 202, Yekaterinburg 620144, Russia
| | - Natalya A. Orekhova
- Laboratory of Population Radiobiology, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 Marta str. 202, Yekaterinburg 620144, Russia
| |
Collapse
|
14
|
Jaramillo-Botero A, Colorado J, Quimbaya M, Rebolledo MC, Lorieux M, Ghneim-Herrera T, Arango CA, Tobón LE, Finke J, Rocha C, Muñoz F, Riascos JJ, Silva F, Chirinda N, Caccamo M, Vandepoele K, Goddard WA. The ÓMICAS alliance, an international research program on multi-omics for crop breeding optimization. FRONTIERS IN PLANT SCIENCE 2022; 13:992663. [PMID: 36311093 PMCID: PMC9614048 DOI: 10.3389/fpls.2022.992663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The OMICAS alliance is part of the Colombian government's Scientific Ecosystem, established between 2017-2018 to promote world-class research, technological advancement and improved competency of higher education across the nation. Since the program's kick-off, OMICAS has focused on consolidating and validating a multi-scale, multi-institutional, multi-disciplinary strategy and infrastructure to advance discoveries in plant science and the development of new technological solutions for improving agricultural productivity and sustainability. The strategy and methods described in this article, involve the characterization of different crop models, using high-throughput, real-time phenotyping technologies as well as experimental tissue characterization at different levels of the omics hierarchy and under contrasting conditions, to elucidate epigenome-, genome-, proteome- and metabolome-phenome relationships. The massive data sets are used to derive in-silico models, methods and tools to discover complex underlying structure-function associations, which are then carried over to the production of new germplasm with improved agricultural traits. Here, we describe OMICAS' R&D trans-disciplinary multi-project architecture, explain the overall strategy and methods for crop-breeding, recent progress and results, and the overarching challenges that lay ahead in the field.
Collapse
Affiliation(s)
- Andres Jaramillo-Botero
- Chemistry and Chemical Engineering Division, California Institute of Technology, Pasadena, CA, United States
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
| | - Julian Colorado
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ingeniería, Departamento de Ingeniería Electrónica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Mauricio Quimbaya
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ingeniería y Ciencias, Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana, Cali, Colombia
| | - Maria Camila Rebolledo
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Mathias Lorieux
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Thaura Ghneim-Herrera
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ciencias Naturales, Departamento de Ciencias Biológicas, Universidad Icesi, Cali, Colombia
| | - Carlos A. Arango
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ciencias Naturales, Departamento de Ciencias Químicas, Universidad Icesi, Cali, Colombia
| | - Luis E. Tobón
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ingeniería y Ciencias, Departamento de Electrónica y Ciencias de la Computación, Pontificia Universidad Javeriana, Cali, Colombia
| | - Jorge Finke
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ingeniería y Ciencias, Departamento de Electrónica y Ciencias de la Computación, Pontificia Universidad Javeriana, Cali, Colombia
| | - Camilo Rocha
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ingeniería y Ciencias, Departamento de Electrónica y Ciencias de la Computación, Pontificia Universidad Javeriana, Cali, Colombia
| | - Fernando Muñoz
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Centro de Investigación de la Caña de Azúcar de Colombia, Centro de Investigación de la Caña de Azúcar (CENICAÑA), Cali, Colombia
| | - John J. Riascos
- Facultad de Ingeniería y Ciencias, Departamento de Electrónica y Ciencias de la Computación, Pontificia Universidad Javeriana, Cali, Colombia
- Vlaams Instituut voor Biotechnologie, Bioinformatics Systems Biology, Ghent University, Gent, Belgium
| | - Fernando Silva
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Centro de Investigación de la Caña de Azúcar de Colombia, Centro de Investigación de la Caña de Azúcar (CENICAÑA), Cali, Colombia
| | - Ngonidzashe Chirinda
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Mario Caccamo
- National Institute of Agricultural Botanics (NIAB), Cambridge, United Kingdom
| | - Klaas Vandepoele
- Vlaams Instituut voor Biotechnologie, Bioinformatics Systems Biology, Ghent University, Gent, Belgium
| | - William A. Goddard
- Chemistry and Chemical Engineering Division, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
15
|
Gallo‐Franco JJ, Ghneim‐Herrera T, Tobar‐Tosse F, Romero M, Chaura J, Quimbaya M. Whole-genome DNA methylation patterns of Oryza sativa (L.) and Oryza glumaepatula (Steud) genotypes associated with aluminum response. PLANT DIRECT 2022; 6:e430. [PMID: 36051226 PMCID: PMC9414936 DOI: 10.1002/pld3.430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 05/05/2023]
Abstract
Epigenetic mechanisms in crops have emerged as a fundamental factor in plant adaptation and acclimation to biotic and abiotic stresses. Among described epigenetic mechanisms, DNA methylation has been defined as the most studied epigenetic modification involved in several developmental processes. It has been shown that contrasting methylation marks are associated with gene expression variations between cultivated and wild crop species. In this study, we analyzed single-base resolution methylome maps for Oryza sativa (a cultivated species) and Oryza glumaepatula (a wild species) genotypes grown under control conditions. Our results showed that overall, genome-wide methylation profiles are mainly conserved between both species, nevertheless, there are several differentially methylated regions with species-specific methylation patterns. In addition, we analyzed the association of identified DNA methylation marks in relation with Aluminum-tolerance levels of studied genotypes. We found several differentially methylated regions (DMRs) and DMR-associated genes (DAGs) that are linked with Al tolerance. Some of these DAGs have been previously reported as differentially expressed under Al exposure in O. sativa. Complementarily a Transposable Elements (TE) analysis revealed that specific aluminum related genes have associated-TEs potentially regulated by DNA methylation. Interestingly, the DMRs and DAGs between Al-tolerant and susceptible genotypes were different between O. sativa and O. glumaepatula, suggesting that methylation patterns related to Al responses are unique for each rice species. Our findings provide novel insights into DNA methylation patterns in wild and cultivated rice genotypes and their possible role in the regulation of plant stress responses.
Collapse
Affiliation(s)
| | | | - Fabian Tobar‐Tosse
- Departamento de Ciencias Básicas de la SaludPontificia Universidad Javeriana CaliCaliColombia
| | - Miguel Romero
- Departamento de Electrónica y Ciencias de la computaciónPontificia Universidad Javeriana CaliCaliColombia
| | - Juliana Chaura
- Departamento de Ciencias BiológicasUniversidad ICESICaliColombia
| | - Mauricio Quimbaya
- Departamento de Ciencias Naturales y MatemáticasPontificia Universidad Javeriana CaliCaliColombia
| |
Collapse
|
16
|
Sun M, Yang Z, Liu L, Duan L. DNA Methylation in Plant Responses and Adaption to Abiotic Stresses. Int J Mol Sci 2022; 23:ijms23136910. [PMID: 35805917 PMCID: PMC9266845 DOI: 10.3390/ijms23136910] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Due to their sessile state, plants are inevitably affected by and respond to the external environment. So far, plants have developed multiple adaptation and regulation strategies to abiotic stresses. One such system is epigenetic regulation, among which DNA methylation is one of the earliest and most studied regulatory mechanisms, which can regulate genome functioning and induce plant resistance and adaption to abiotic stresses. In this review, we outline the most recent findings on plant DNA methylation responses to drought, high temperature, cold, salt, and heavy metal stresses. In addition, we discuss stress memory regulated by DNA methylation, both in a transient way and the long-term memory that could pass to next generations. To sum up, the present review furnishes an updated account of DNA methylation in plant responses and adaptations to abiotic stresses.
Collapse
Affiliation(s)
| | | | - Li Liu
- Correspondence: (L.L.); (L.D.)
| | | |
Collapse
|
17
|
Guarino F, Cicatelli A, Castiglione S, Agius DR, Orhun GE, Fragkostefanakis S, Leclercq J, Dobránszki J, Kaiserli E, Lieberman-Lazarovich M, Sõmera M, Sarmiento C, Vettori C, Paffetti D, Poma AMG, Moschou PN, Gašparović M, Yousefi S, Vergata C, Berger MMJ, Gallusci P, Miladinović D, Martinelli F. An Epigenetic Alphabet of Crop Adaptation to Climate Change. Front Genet 2022; 13:818727. [PMID: 35251130 PMCID: PMC8888914 DOI: 10.3389/fgene.2022.818727] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/28/2022] [Indexed: 01/10/2023] Open
Abstract
Crop adaptation to climate change is in a part attributed to epigenetic mechanisms which are related to response to abiotic and biotic stresses. Although recent studies increased our knowledge on the nature of these mechanisms, epigenetics remains under-investigated and still poorly understood in many, especially non-model, plants, Epigenetic modifications are traditionally divided into two main groups, DNA methylation and histone modifications that lead to chromatin remodeling and the regulation of genome functioning. In this review, we outline the most recent and interesting findings on crop epigenetic responses to the environmental cues that are most relevant to climate change. In addition, we discuss a speculative point of view, in which we try to decipher the “epigenetic alphabet” that underlies crop adaptation mechanisms to climate change. The understanding of these mechanisms will pave the way to new strategies to design and implement the next generation of cultivars with a broad range of tolerance/resistance to stresses as well as balanced agronomic traits, with a limited loss of (epi)genetic variability.
Collapse
Affiliation(s)
- Francesco Guarino
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università Degli Studi di Salerno, Salerno, Italy
| | - Angela Cicatelli
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università Degli Studi di Salerno, Salerno, Italy
| | - Stefano Castiglione
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università Degli Studi di Salerno, Salerno, Italy
| | - Dolores R. Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Gul Ebru Orhun
- Bayramic Vocational College, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | | | - Julie Leclercq
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Institut Agro, Montpellier, France
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, FAFSEM, University of Debrecen, Debrecen, Hungary
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Merike Sõmera
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Cristina Vettori
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Donatella Paffetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Anna M. G. Poma
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, Aquila, Italy
| | - Panagiotis N. Moschou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Mateo Gašparović
- Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb, Zagreb, Croatia
| | - Sanaz Yousefi
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran
| | - Chiara Vergata
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Margot M. J. Berger
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, Bordeaux, France
| | - Philippe Gallusci
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, Bordeaux, France
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
- *Correspondence: Dragana Miladinović, ; Federico Martinelli,
| | - Federico Martinelli
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- *Correspondence: Dragana Miladinović, ; Federico Martinelli,
| |
Collapse
|
18
|
Bao G, Zhou Q, Li S, Ashraf U, Huang S, Miao A, Cheng Z, Wan X, Zheng Y. Transcriptome Analysis Revealed the Mechanisms Involved in Ultrasonic Seed Treatment-Induced Aluminum Tolerance in Peanut. FRONTIERS IN PLANT SCIENCE 2022; 12:807021. [PMID: 35211134 PMCID: PMC8861904 DOI: 10.3389/fpls.2021.807021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Ultrasonic (US) treatment is an efficient method to induce crop tolerance against heavy metal toxicity; however, US-induced aluminum (Al) tolerance in peanuts was rarely studied. This study was comprised of two treatments, namely, CK, without ultrasonic treatment, and US, an ultrasonic seed treatment, for 15 min. Both treated and non-treated treatments were applied with Al in the form of AlCl3.18H2O at 5 mmol L-1 in Hoagland solution at one leaf stage. Results depicted that plant height, main root length, and number of lateral roots increased significantly under US treatment. Transcriptome analysis revealed that plant hormone signal transduction and transcription factors (TFs) were significantly enriched in the differentially expressed genes (DEGs) in US treatment, and the plant hormones were measured, including salicylic acid (SA) and abscisic acid (ABA) contents, were substantially increased, while indole acetic acid (IAA) and jasmonic acid (JA) contents were decreased significantly in US treatment. The TFs were verified using quantitative real-time (qRT)-PCR, and it was found that multiple TFs genes were significantly upregulated in US treatment, and ALMT9 and FRDL1 genes were also significantly upregulated in US treatment. Overall, the US treatment induced the regulation of hormone content and regulated gene expression by regulating TFs to improve Al tolerance in peanuts. This study provided a theoretical rationale for US treatment to improve Al tolerance in peanuts.
Collapse
Affiliation(s)
- Gegen Bao
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qi Zhou
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shengyu Li
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Suihua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Aricultural University, Guangzhou, China
| | - Aimin Miao
- College of Automation, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhishang Cheng
- College of Automation, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaorong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yixiong Zheng
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
19
|
Venegas-Rioseco J, Ginocchio R, Ortiz-Calderón C. Increase in Phytoextraction Potential by Genome Editing and Transformation: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 11:86. [PMID: 35009088 PMCID: PMC8747683 DOI: 10.3390/plants11010086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Soil metal contamination associated with productive activities is a global issue. Metals are not biodegradable and tend to accumulate in soils, posing potential risks to surrounding ecosystems and human health. Plant-based techniques (phytotechnologies) for the in situ remediation of metal-polluted soils have been developed, but these have some limitations. Phytotechnologies are a group of technologies that take advantage of the ability of certain plants to remediate soil, water, and air resources to rehabilitate ecosystem services in managed landscapes. Regarding soil metal pollution, the main objectives are in situ stabilization (phytostabilization) and the removal of contaminants (phytoextraction). Genetic engineering strategies such as gene editing, stacking genes, and transformation, among others, may improve the phytoextraction potential of plants by enhancing their ability to accumulate and tolerate metals and metalloids. This review discusses proven strategies to enhance phytoextraction efficiency and future perspectives on phytotechnologies.
Collapse
Affiliation(s)
- Javiera Venegas-Rioseco
- Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Center of Applied Ecology and Sustainability, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Rosanna Ginocchio
- Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Center of Applied Ecology and Sustainability, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Claudia Ortiz-Calderón
- Laboratorio de Bioquímica Vegetal y Fitorremediación, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile;
| |
Collapse
|
20
|
Żabka A, Gocek N, Winnicki K, Szczeblewski P, Laskowski T, Polit JT. Changes in Epigenetic Patterns Related to DNA Replication in Vicia faba Root Meristem Cells under Cadmium-Induced Stress Conditions. Cells 2021; 10:3409. [PMID: 34943918 PMCID: PMC8699714 DOI: 10.3390/cells10123409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/01/2022] Open
Abstract
Experiments on Vicia faba root meristem cells exposed to 150 µM cadmium chloride (CdCl2) were undertaken to analyse epigenetic changes, mainly with respect to DNA replication stress. Histone modifications examined by means of immunofluorescence labeling included: (1) acetylation of histone H3 on lysine 56 (H3K56Ac), involved in transcription, S phase, and response to DNA damage during DNA biosynthesis; (2) dimethylation of histone H3 on lysine 79 (H3K79Me2), correlated with the replication initiation; (3) phosphorylation of histone H3 on threonine 45 (H3T45Ph), engaged in DNA synthesis and apoptosis. Moreover, immunostaining using specific antibodies against 5-MetC-modified DNA was used to determine the level of DNA methylation. A significant decrease in the level of H3K79Me2, noted in all phases of the CdCl2-treated interphase cell nuclei, was found to correspond with: (1) an increase in the mean number of intranuclear foci of H3K56Ac histones (observed mainly in S-phase), (2) a plethora of nuclear and nucleolar labeling patterns (combined with a general decrease in H3T45Ph), and (3) a decrease in DNA methylation. All these changes correlate well with a general viewpoint that DNA modifications and post-translational histone modifications play an important role in gene expression and plant development under cadmium-induced stress conditions.
Collapse
Affiliation(s)
- Aneta Żabka
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (N.G.); (K.W.); (J.T.P.)
| | - Natalia Gocek
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (N.G.); (K.W.); (J.T.P.)
| | - Konrad Winnicki
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (N.G.); (K.W.); (J.T.P.)
| | - Paweł Szczeblewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (P.S.); (T.L.)
| | - Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (P.S.); (T.L.)
| | - Justyna Teresa Polit
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (N.G.); (K.W.); (J.T.P.)
| |
Collapse
|
21
|
DNA methylation and histone modifications induced by abiotic stressors in plants. Genes Genomics 2021; 44:279-297. [PMID: 34837631 DOI: 10.1007/s13258-021-01191-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND A review of research shows that methylation in plants is more complex and sophisticated than in microorganisms and animals. Overall, studies on the effects of abiotic stress on epigenetic modifications in plants are still scarce and limited to few species. Epigenetic regulation of plant responses to environmental stresses has not been elucidated. This study summarizes key effects of abiotic stressors on DNA methylation and histone modifications in plants. DISCUSSION Plant DNA methylation and histone modifications in responses to abiotic stressors varied and depended on the type and level of stress, plant tissues, age, and species. A critical analysis of the literature available revealed that 44% of the epigenetic modifications induced by abiotic stressors in plants involved DNA hypomethylation, 40% DNA hypermethylation, and 16% histone modification. The epigenetic changes in plants might be underestimated since most authors used methods such as methylation-sensitive amplification polymorphism (MSAP), High performance liquid chromatography (HPLC), and immunolabeling that are less sensitive compared to bisulfite sequencing and single-base resolution methylome analyses. More over, mechanisms underlying epigenetic changes in plants have not yet been determined since most reports showed only the level or/and distribution of DNA methylation and histone modifications. CONCLUSIONS Various epigenetic mechanisms are involved in response to abiotic stressors, and several of them are still unknown. Integrated analysis of the changes in the genome by omic approaches should help to identify novel components underlying mechanisms involved in DNA methylation and histone modifications associated with plant response to environmental stressors.
Collapse
|
22
|
Singh CK, Singh D, Taunk J, Chaudhary P, Tomar RSS, Chandra S, Singh D, Pal M, Konjengbam NS, Singh MP, Singh Sengar R, Sarker A. Comparative Inter- and IntraSpecies Transcriptomics Revealed Key Differential Pathways Associated With Aluminium Stress Tolerance in Lentil. FRONTIERS IN PLANT SCIENCE 2021; 12:693630. [PMID: 34531881 PMCID: PMC8438445 DOI: 10.3389/fpls.2021.693630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/30/2021] [Indexed: 05/28/2023]
Abstract
Aluminium stress causes plant growth retardation and engenders productivity loss under acidic soil conditions. This study accentuates morpho-physiological and molecular bases of aluminium (Al) tolerance within and between wild (ILWL-15) and cultivated (L-4602 and BM-4) lentil species. Morpho-physiological studies revealed better cyto-morphology of tolerant genotypes over sensitive under Al3+ stress conditions. Mitotic lesions were observed in root cells under these conditions. Transcriptome analysis under Al3+ stress revealed 30,158 specifically up-regulated genes in different comparison groups showing contigs between 15,305 and 18,861 bp. In tolerant genotypes, top up-regulated differentially expressed genes (DEGs) were found to be involved in organic acid synthesis and exudation, production of antioxidants, callose synthesis, protein degradation, and phytohormone- and calcium-mediated signalling under stress conditions. DEGs associated with epigenetic regulation and Al3+ sequestration inside vacuole were specifically upregulated in wild and cultivars, respectively. Based on assembled unigenes, an average of 6,645.7 simple sequence repeats (SSRs) and 14,953.7 high-quality single nucleotide polymorphisms (SNPs) were spotted. By quantitative real-time polymerase chain reaction (qRT-PCR), 12 selected genes were validated. Gene ontology (GO) annotation revealed a total of 8,757 GO terms in three categories, viz., molecular, biological, and cellular processes. Kyoto Encyclopaedia of Genes and Genomes pathway scanning also revealed another probable pathway pertaining to metacaspase-1,-4, and -9 for programmed cell death under Al-stress conditions. This investigation reveals key inter- and intraspecies metabolic pathways associated with Al-stress tolerance in lentil species that can be utilised in designing future breeding programmes to improve lentil and related species towards Al3+ stress.
Collapse
Affiliation(s)
- Chandan Kumar Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Dharmendra Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Jyoti Taunk
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India
| | - Priya Chaudhary
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Ram Sewak Singh Tomar
- College of Horticulture and Forestry, Rani Lakshmi Bai Central Agricultural University, Jhansi, India
| | - Shivani Chandra
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Deepti Singh
- Department of Botany, Meerut College, Meerut, India
| | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India
| | - Noren Singh Konjengbam
- College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University—Imphal, Umiam, India
| | - M. Premjit Singh
- College of Agriculture, Central Agricultural University—Imphal, Iroisemba, India
| | - Rakesh Singh Sengar
- College of Biotechnology, Sardar Vallabh Bhai Patel Agricultural University, Meerut, India
| | - Ashutosh Sarker
- International Center for Agriculture Research in the Dry Areas, New Delhi, India
| |
Collapse
|
23
|
Niekerk LA, Carelse MF, Bakare OO, Mavumengwana V, Keyster M, Gokul A. The Relationship between Cadmium Toxicity and the Modulation of Epigenetic Traits in Plants. Int J Mol Sci 2021; 22:ijms22137046. [PMID: 34209014 PMCID: PMC8268939 DOI: 10.3390/ijms22137046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/17/2023] Open
Abstract
Elevated concentrations of heavy metals such as cadmium (Cd) have a negative impact on staple crop production due to their ability to elicit cytotoxic and genotoxic effects on plants. In order to understand the relationship between Cd stress and plants in an effort to improve Cd tolerance, studies have identified genetic mechanisms which could be important for conferring stress tolerance. In recent years epigenetic studies have garnered much attention and hold great potential in both improving the understanding of Cd stress in plants as well as revealing candidate mechanisms for future work. This review describes some of the main epigenetic mechanisms involved in Cd stress responses. We summarize recent literature and data pertaining to chromatin remodeling, DNA methylation, histone acetylation and miRNAs in order to understand the role these epigenetic traits play in cadmium tolerance. The review aims to provide the framework for future studies where these epigenetic traits may be used in plant breeding and molecular studies in order to improve Cd tolerance.
Collapse
Affiliation(s)
- Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.F.C.); (O.O.B.)
| | - Mogamat Fahiem Carelse
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.F.C.); (O.O.B.)
| | - Olalekan Olanrewaju Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.F.C.); (O.O.B.)
| | - Vuyo Mavumengwana
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Tygerberg Campus, Stellenbosch University, Cape Town 7505, South Africa;
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.F.C.); (O.O.B.)
- Correspondence: (M.K.); (A.G.); Tel.: +27-587185392 (M.K. & A.G.)
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa
- Correspondence: (M.K.); (A.G.); Tel.: +27-587185392 (M.K. & A.G.)
| |
Collapse
|