1
|
Lyu B, Gou W, Xu F, Chen L, Wang Z, Ren Z, Liu G, Li Y, Hou W. Target Discovery Driven by Chemical Biology and Computational Biology. CHEM REC 2025:e202400182. [PMID: 39811950 DOI: 10.1002/tcr.202400182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Target identification is crucial for drug screening and development because it can reveal the mechanism of drug action and ensure the reliability and accuracy of the results. Chemical biology, an interdisciplinary field combining chemistry and biology, can assist in this process by studying the interactions between active molecular compounds and proteins and their physiological effects. It can also help predict potential drug targets or candidates, develop new biomarker assays and diagnostic reagents, and evaluate the selectivity and range of active compounds to reduce the risk of off-target effects. Chemical biology can achieve these goals using techniques such as changing protein thermal stability, enzyme sensitivity, and molecular structure and applying probes, isotope labeling and mass spectrometry. Concurrently, computational biology employs a diverse array of computational models to predict drug targets. This approach also offers innovative avenues for repurposing existing drugs. In this paper, we review the reported chemical biology and computational biology techniques for identifying different types of targets that can provide valuable insights for drug target discovery.
Collapse
Affiliation(s)
- Bohai Lyu
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenfeng Gou
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Feifei Xu
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Leyuan Chen
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Zhiyun Wang
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Zhonghao Ren
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Gaiting Liu
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yiliang Li
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Wenbin Hou
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| |
Collapse
|
2
|
Jariyasopit N, Khoomrung S. Mass spectrometry-based analysis of gut microbial metabolites of aromatic amino acids. Comput Struct Biotechnol J 2023; 21:4777-4789. [PMID: 37841334 PMCID: PMC10570628 DOI: 10.1016/j.csbj.2023.09.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
Small molecules derived from gut microbiota have been increasingly investigated to better understand the functional roles of the human gut microbiome. Microbial metabolites of aromatic amino acids (AAA) have been linked to many diseases, such as metabolic disorders, chronic kidney diseases, inflammatory bowel disease, diabetes, and cancer. Important microbial AAA metabolites are often discovered via global metabolite profiling of biological specimens collected from humans or animal models. Subsequent metabolite identity confirmation and absolute quantification using targeted analysis enable comparisons across different studies, which can lead to the establishment of threshold concentrations of potential metabolite biomarkers. Owing to their excellent selectivity and sensitivity, hyphenated mass spectrometry (MS) techniques are often employed to identify and quantify AAA metabolites in various biological matrices. Here, we summarize the developments over the past five years in MS-based methodology for analyzing gut microbiota-derived AAA. Sample preparation, method validation, analytical performance, and statistical methods for correlation analysis are discussed, along with future perspectives.
Collapse
Affiliation(s)
- Narumol Jariyasopit
- Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
| | - Sakda Khoomrung
- Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
3
|
Wanichthanarak K, Nookaew I, Pasookhush P, Wongsurawat T, Jenjaroenpun P, Leeratsuwan N, Wattanachaisaereekul S, Visessanguan W, Sirivatanauksorn Y, Nuntasaen N, Kuhakarn C, Reutrakul V, Ajawatanawong P, Khoomrung S. Revisiting chloroplast genomic landscape and annotation towards comparative chloroplast genomes of Rhamnaceae. BMC PLANT BIOLOGY 2023; 23:59. [PMID: 36707785 PMCID: PMC9883906 DOI: 10.1186/s12870-023-04074-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Massive parallel sequencing technologies have enabled the elucidation of plant phylogenetic relationships from chloroplast genomes at a high pace. These include members of the family Rhamnaceae. The current Rhamnaceae phylogenetic tree is from 13 out of 24 Rhamnaceae chloroplast genomes, and only one chloroplast genome of the genus Ventilago is available. Hence, the phylogenetic relationships in Rhamnaceae remain incomplete, and more representative species are needed. RESULTS The complete chloroplast genome of Ventilago harmandiana Pierre was outlined using a hybrid assembly of long- and short-read technologies. The accuracy and validity of the final genome were confirmed with PCR amplifications and investigation of coverage depth. Sanger sequencing was used to correct for differences in lengths and nucleotide bases between inverted repeats because of the homopolymers. The phylogenetic trees reconstructed using prevalent methods for phylogenetic inference were topologically similar. The clustering based on codon usage was congruent with the molecular phylogenetic tree. The groups of genera in each tribe were in accordance with tribal classification based on molecular markers. We resolved the phylogenetic relationships among six Hovenia species, three Rhamnus species, and two Ventilago species. Our reconstructed tree provides the most complete and reliable low-level taxonomy to date for the family Rhamnaceae. Similar to other higher plants, the RNA editing mostly resulted in converting serine to leucine. Besides, most genes were subjected to purifying selection. Annotation anomalies, including indel calling errors, unaligned open reading frames of the same gene, inconsistent prediction of intergenic regions, and misannotated genes, were identified in the published chloroplast genomes used in this study. These could be a result of the usual imperfections in computational tools, and/or existing errors in reference genomes. Importantly, these are points of concern with regards to utilizing published chloroplast genomes for comparative genomic analysis. CONCLUSIONS In summary, we successfully demonstrated the use of comprehensive genomic data, including DNA and amino acid sequences, to build a reliable and high-resolution phylogenetic tree for the family Rhamnaceae. Additionally, our study indicates that the revision of genome annotation before comparative genomic analyses is necessary to prevent the propagation of errors and complications in downstream analysis and interpretation.
Collapse
Affiliation(s)
- Kwanjeera Wanichthanarak
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Phongthana Pasookhush
- Division of Bioinformatics and Data Management for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Namkhang Leeratsuwan
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - Wonnop Visessanguan
- Functional Ingredients and Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Phathumthani, 12120, Thailand
| | - Yongyut Sirivatanauksorn
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Narong Nuntasaen
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of National Parks, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Bangkok, 10900, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pravech Ajawatanawong
- Division of Bioinformatics and Data Management for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Sakda Khoomrung
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
4
|
Jariyasopit N, Limjiasahapong S, Kurilung A, Sartyoungkul S, Wisanpitayakorn P, Nuntasaen N, Kuhakarn C, Reutrakul V, Kittakoop P, Sirivatanauksorn Y, Khoomrung S. Traveling Wave Ion Mobility-Derived Collision Cross Section Database for Plant Specialized Metabolites: An Application to Ventilago harmandiana Pierre. J Proteome Res 2022; 21:2481-2492. [PMID: 36154058 PMCID: PMC9552781 DOI: 10.1021/acs.jproteome.2c00413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/29/2022]
Abstract
The combination of ion mobility mass spectrometry (IM-MS) and chromatography is a valuable tool for identifying compounds in natural products. In this study, using an ultra-performance liquid chromatography system coupled to a high-resolution quadrupole/traveling wave ion mobility spectrometry/time-of-flight MS (UPLC-TWIMS-QTOF), we have established and validated a comprehensive TWCCSN2 and MS database for 112 plant specialized metabolites. The database included 15 compounds that were isolated and purified in-house and are not commercially available. We obtained accurate m/z, retention times, fragment ions, and TWIMS-derived CCS (TWCCSN2) values for 207 adducts (ESI+ and ESI-). The database included novel 158 TWCCSN2 values from 79 specialized metabolites. In the presence of plant matrix, the CCS measurement was reproducible and robust. Finally, we demonstrated the application of the database to extend the metabolite coverage of Ventilago harmandiana Pierre. In addition to pyranonaphthoquinones, a group of known specialized metabolites in V. harmandiana, we identified flavonoids, xanthone, naphthofuran, and protocatechuic acid for the first time through targeted analysis. Interestingly, further investigation using IM-MS of unknown features suggested the presence of organonitrogen compounds and lipid and lipid-like molecules, which is also reported for the first time. Data are available on the MassIVE (https://massive.ucsd.edu, data set identifier MSV000090213).
Collapse
Affiliation(s)
- Narumol Jariyasopit
- Metabolomics
and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Metabolomics and Phenomics Center, Faculty
of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suphitcha Limjiasahapong
- Siriraj
Metabolomics and Phenomics Center, Faculty
of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Alongkorn Kurilung
- Metabolomics
and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sitanan Sartyoungkul
- Metabolomics
and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pattipong Wisanpitayakorn
- Metabolomics
and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Metabolomics and Phenomics Center, Faculty
of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Narong Nuntasaen
- Center
of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400 Thailand
| | - Chutima Kuhakarn
- Center
of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400 Thailand
| | - Vichai Reutrakul
- Center
of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400 Thailand
| | - Prasat Kittakoop
- Chulabhorn
Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Laksi,
Bangkok 10210, Thailand
- Chulabhorn
Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Yongyut Sirivatanauksorn
- Siriraj
Metabolomics and Phenomics Center, Faculty
of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sakda Khoomrung
- Metabolomics
and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Metabolomics and Phenomics Center, Faculty
of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Center
of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400 Thailand
| |
Collapse
|
5
|
Singh Y, Nimoriya R, Rawat P, Mishra DK, Kanojiya S. Quantitative evaluation of cardiac glycosides and their seasonal variation analysis in Nerium oleander using UHPLC-ESI-MS/MS. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:746-753. [PMID: 35355343 DOI: 10.1002/pca.3126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Nerium oleander is an eminent source of structurally diverse cardiac glycosides (CGs), plays a prominent role in the treatment of heart failure, and inhibits the proliferation of cancer cell lines. CGs exert their cardiotonic action by binding to the extracellularly exposed recognition sites on Na+ /K+ -ATPase, an integral membrane protein that establishes the electrochemical gradient of Na+ and K+ ions across the plasma membrane. OBJECTIVE We aimed to quantitatively determine CGs and their seasonal variation in leaf and stem samples of N. oleander utilizing UHPLC-ESI-MS/MS techniques. METHODS The UHPLC-ESI-MS/MS analytical method was developed utilizing multiple reaction monitoring (MRM) mode. The Waters BEH C18 (150 mm × 2.1 mm, 1.7 μm) column was used with a 22-min linear gradient consisting of acetonitrile and 5 mM ammonium acetate buffer. RESULTS In total 21 CGs were quantitatively determined in the seasonal leaf and stem samples of N. oleander along with the absolute quantitation of the three chemical markers odoroside H (244.8 μg/g), odoroside A (231.4 μg/g), and oleandrin (703.9 μg/g). The season-specific accumulation of chemical markers was observed in the order of predominance odoroside A (summer season, stem), odoroside H (winter season, stem), and oleandrin (rainy season, leaf). Besides this, the remaining 18 CGs were relatively quantified in the same samples. CONCLUSION The developed method is simple and reliable and can be used for the identification and quantification of multiple CGs in N. oleander.
Collapse
Affiliation(s)
- Yatendra Singh
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Renu Nimoriya
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Priyanka Rawat
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Dipak K Mishra
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sanjeev Kanojiya
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
6
|
Anekthanakul K, Manocheewa S, Chienwichai K, Poungsombat P, Limjiasahapong S, Wanichthanarak K, Jariyasopit N, Mathema VB, Kuhakarn C, Reutrakul V, Phetcharaburanin J, Panya A, Phonsatta N, Visessanguan W, Pomyen Y, Sirivatanauksorn Y, Worawichawong S, Sathirapongsasuti N, Kitiyakara C, Khoomrung S. Predicting lupus membranous nephritis using reduced picolinic acid to tryptophan ratio as a urinary biomarker. iScience 2021; 24:103355. [PMID: 34805802 PMCID: PMC8590081 DOI: 10.1016/j.isci.2021.103355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/01/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
The current gold standard for classifying lupus nephritis (LN) progression is a renal biopsy, which is an invasive procedure. Undergoing a series of biopsies for monitoring disease progression and treatments is unlikely suitable for patients with LN. Thus, there is an urgent need for non-invasive alternative biomarkers that can facilitate LN class diagnosis. Such biomarkers will be very useful in guiding intervention strategies to mitigate or treat patients with LN. Urine samples were collected from two independent cohorts. Patients with LN were classified into proliferative (class III/IV) and membranous (class V) by kidney histopathology. Metabolomics was performed to identify potential metabolites, which could be specific for the classification of membranous LN. The ratio of picolinic acid (Pic) to tryptophan (Trp) ([Pic/Trp] ratio) was found to be a promising candidate for LN diagnostic and membranous classification. It has high potential as an alternative biomarker for the non-invasive diagnosis of LN.
Collapse
Affiliation(s)
- Krittima Anekthanakul
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Siriphan Manocheewa
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kittiphan Chienwichai
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Hatyai hospital, Songkhla 90110, Thailand
| | - Patcha Poungsombat
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suphitcha Limjiasahapong
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kwanjeera Wanichthanarak
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Narumol Jariyasopit
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Vivek Bhakta Mathema
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Atikorn Panya
- Functional Ingredients and Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Natthaporn Phonsatta
- Functional Ingredients and Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Wonnop Visessanguan
- Functional Ingredients and Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Yotsawat Pomyen
- Translational Research Unit, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Yongyut Sirivatanauksorn
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suchin Worawichawong
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Nuankanya Sathirapongsasuti
- Section of Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Research Network of NANOTEC - MU Ramathibodi on Nanomedicine, Bangkok 10400, Thailand
| | - Chagriya Kitiyakara
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Research Network of NANOTEC - MU Ramathibodi on Nanomedicine, Bangkok 10400, Thailand
| | - Sakda Khoomrung
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
7
|
Kaewnarin K, Limjiasahapong S, Jariyasopit N, Anekthanakul K, Kurilung A, Wong SCC, Sirivatanauksorn Y, Visessanguan W, Khoomrung S. High-Resolution QTOF-MRM for Highly Accurate Identification and Quantification of Trace Levels of Triterpenoids in Ganoderma lucidum Mycelium. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2451-2462. [PMID: 34412475 DOI: 10.1021/jasms.1c00175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The accurate quantification of triterpenoids in Ganoderma lucidum mushroom in the mycelium stage is challenging due to their low concentrations, interference from other possible isomers, and the complex matrix. Here, a high-resolution quadrupole-time-of-flight mass spectrometry "multiple reaction monitoring" with target enhancement (HR-QTOF-MRM) method was developed to quantify seven target triterpenoids in G. lucidum. The performance of this method was compared against an optimized QQQ-MRM method. The HR-QTOF-MRM was shown to be capable of distinguishing target triterpenoids from interferent peaks in the presence of matrices. The HR-QTOF-MRM LOD and LLOQ values were found to be one to two times lower than those derived from the QQQ-MRM method. Intraday and interday variabilities of the HR-QTOF-MRM demonstrated better reproducibility than the QQQ-MRM. In addition, excellent recoveries of the analytes ranging from 80 to 117% were achieved. Spiking experiments were carried out to verify and compare the quantitative accuracy of the two methods. The HR-QTOF-MRM method provided better percent accuracy, ranging from 84% to 99% (<3% RSD), compared with the range of 69 to 114% (<4%RSD) given by the QQQ-MRM method. These results demonstrate that the new HR-QTOF-MRM mode is able to improve sensitivity, reproducibility, and accuracy of trace level analysis of triterpenoids in the complex biological samples. The triterpenoid concentrations were in the range of nondetect to 0.06-6.72 mg/g of dried weight in fruiting body and to 0.0009-0.01 mg/g of dried weight in mycelium.
Collapse
Affiliation(s)
- Khwanta Kaewnarin
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suphitcha Limjiasahapong
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Narumol Jariyasopit
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Krittima Anekthanakul
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Alongkorn Kurilung
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | - Yongyut Sirivatanauksorn
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani 12120, Thailand
| | - Sakda Khoomrung
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|