1
|
Bonarota MS, Kosma D, Barrios-Masias FH. Physiological characterization of the tomato cutin mutant cd1 under salinity and nitrogen stress. PLANTA 2024; 260:64. [PMID: 39073466 DOI: 10.1007/s00425-024-04494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
MAIN CONCLUSION We identified tomato leaf cuticle and root suberin monomers that play a role in the response to nitrogen deficiency and salinity stress and discuss their potential agronomic value for breeding. The plant cuticle plays a key role in plant-water relations, and cuticle's agronomic value in plant breeding programs is currently under investigation. In this study, the tomato cutin mutant cd1, with altered fruit cuticle, was physiologically characterized under two nitrogen treatments and three salinity levels. We evaluated leaf wax and cutin load and composition, root suberin, stomatal conductance, photosynthetic rate, partial factor productivity from applied N, flower and fruit number, fruit size and cuticular transpiration, and shoot and root biomass. Both nitrogen and salinity treatments altered leaf cuticle and root suberin composition, regardless of genotype (cd1 or M82). Compared with M82, the cd1 mutant showed lower shoot biomass and reduced partial factor productivity from applied N under all treatments. Under N depletion, cd1 showed altered leaf wax composition, but was comparable to the WT under sufficient N. Under salt treatment, cd1 showed an increase in leaf wax and cutin monomers. Root suberin content of cd1 was lower than M82 under control conditions but comparable under higher salinity levels. The tomato mutant cd1 had a higher fruit cuticular transpiration rate, and lower fruit surface area compared to M82. These results show that the cd1 mutation has complex effects on plant physiology, and growth and development beyond cutin deficiency, and offer new insights on the potential agronomic value of leaf cuticle and root suberin for tomato breeding.
Collapse
Affiliation(s)
- Maria-Sole Bonarota
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV, USA
| | - Dylan Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Felipe H Barrios-Masias
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV, USA.
| |
Collapse
|
2
|
Gong T, Brecht JK, Koch KE, Hutton SF, Zhao X. A systematic assessment of how rootstock growth characteristics impact grafted tomato plant biomass, resource partitioning, yield, and fruit mineral composition. FRONTIERS IN PLANT SCIENCE 2022; 13:948656. [PMID: 36589098 PMCID: PMC9798440 DOI: 10.3389/fpls.2022.948656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/23/2022] [Indexed: 06/17/2023]
Abstract
The appropriate selection of rootstock-scion combinations to improve yield and fully realize grafting benefits requires an in-depth understanding of rootstock-scion synergy. Toward this end, we grafted two determinate-type scions [grape tomato ('BHN 1022') and beefsteak tomato ('Skyway')] onto four rootstocks with different characteristics to examine plant growth, yield performance, biomass production, and fruit mineral nutrient composition. The study was conducted during two growing seasons (spring and fall plantings in Florida) under organic production in high tunnels with the non-grafted scions as controls. Rootstocks had previously been designated as either "generative" ('Estamino') or "vegetative" ('DR0141TX') by some commercial suppliers or had not been characterized ['RST-04-106-T' and 'SHIELD RZ F1 (61-802)']. Also, 'Estamino', 'DR0141TX', and 'RST-04-106-T' had been described as more vigorous than 'SHIELD RZ F1 (61-802)'. In both planting seasons (with low levels of soilborne disease pressure), the "vegetative" and "generative" rootstocks increased marketable and total fruit yields for both scions except for the beefsteak tomato grafted with the "vegetative" rootstock in fall planting. Positive effects of 'RST-04-106-T' on fruit yield varied with scions and planting seasons, and were most manifested when grafted with the beefsteak tomato scion in fall planting. 'SHIELD RZ F1 (61-802)' led to similar yields as the non-grafted controls except for grafting with the grape tomato scion in fall planting. For vegetative and fruit biomass, both the "vegetative" and "generative" rootstocks had positive impacts except for the beefsteak tomato in fall planting. For fruit mineral composition, the "vegetative" and "generative" rootstocks, both highly vigorous, consistently elevated fruit P, K, Ca, Zn, and Fe contents on a dry weight basis, whereas the other rootstocks did not. Overall, although the more vigorous rootstocks enhanced tomato plant productivity and fruit minerals, the evidence presented here does not support the suggestion that the so-called "vegetative" and "generative" rootstocks have different impacts on tomato scion yield, biomass production, or fruit mineral contents. More studies with different production systems and environmental conditions as well as contrasting scion genotypes are needed to further categorize the impacts of rootstocks with different vigor and other characteristics on plant biomass production and their implications on fruit yield development.
Collapse
Affiliation(s)
- Tian Gong
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Jeffrey K. Brecht
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Karen E. Koch
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Samuel F. Hutton
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
| | - Xin Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Gong T, Brecht JK, Hutton SF, Koch KE, Zhao X. Tomato fruit quality is more strongly affected by scion type and planting season than by rootstock type. FRONTIERS IN PLANT SCIENCE 2022; 13:948556. [PMID: 36589104 PMCID: PMC9798217 DOI: 10.3389/fpls.2022.948556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/23/2022] [Indexed: 06/17/2023]
Abstract
Previous studies of tomato rootstock effects on fruit quality have yielded mixed results, and few attempts have been made to systematically examine the association between rootstock characteristics and tomato fruit quality. In this study, grape tomato ('BHN 1022') and beefsteak tomato ('Skyway') were grafted onto four rootstocks ['Estamino' (vigorous and "generative"), 'DR0141TX' (vigorous and "vegetative"), 'RST-04-106-T' (uncharacterized), and 'SHIELD RZ F1 (61-802)' (mid-vigor, uncharacterized)] and compared to non-grafted scion controls for two growing seasons (Spring and Fall in Florida) in organically managed high tunnels. In both seasons and for both scions, the two vigorous rootstocks, regardless of their designation as "vegetative" ('DR0141TX') or "generative" ('Estamino'), exhibited negative impacts on dry matter content, soluble solids content (SSC), SSC/titratable acidity (TA), lycopene, and ascorbic acid contents. Similar effects on fruit dry matter content and SSC were also observed with the 'RST-04-106-T' rootstock, although little to no change was seen with grafting onto 'SHIELD RZ F1 (61-802)'. Further studies are needed to elucidate the impact of rootstock vigor on tomato volatile profiles and consumer sensory acceptability in order to better determine whether any of the documented effects are of practical importance. On the other hand, the evident effects of scion cultivar and planting season on fruit quality were observed in most of the measurements. The scion by rootstock interaction affected fruit length, firmness, pH, and total phenolic content, while the planting season by rootstock interaction impacted fruit firmness, pH, total antioxidant capacity, and ascorbic acid and lycopene contents. The multivariate separation pattern of planting season, scion, and rootstock treatments as revealed by the canonical discriminant analysis further indicated that the influence of scion cultivar and planting season on tomato fruit quality could be much more pronounced than the rootstock effects. The fruit color (C* and H°), length and width, SSC, pH, total antioxidant capacity, ascorbic acid, and lycopene contents were the main attributes distinguishing different scion-planting season groups.
Collapse
Affiliation(s)
- Tian Gong
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Jeffrey K. Brecht
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Samuel F. Hutton
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
| | - Karen E. Koch
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Xin Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Wang L, Wu B, Chen G, Chen H, Peng Y, Sohail H, Geng S, Luo G, Xu D, Ouyang B, Bie Z. The essential role of jasmonate signaling in Solanum habrochaites rootstock-mediated cold tolerance in tomato grafts. HORTICULTURE RESEARCH 2022; 10:uhac227. [PMID: 36643752 PMCID: PMC9832872 DOI: 10.1093/hr/uhac227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Tomato (Solanum lycopersicum) is among the most important vegetables across the world, but cold stress usually affects its yield and quality. The wild tomato species Solanum habrochaites is commonly utilized as rootstock for enhancing resistance against abiotic stresses in cultivated tomato, especially cold resistance. However, the underlying molecular mechanism remains unclear. In this research, we confirmed that S. habrochaites rootstock can improve the cold tolerance of cultivated tomato scions, as revealed by growth, physiological, and biochemical indicators. Furthermore, transcriptome profiling indicated significant differences in the scion of homo- and heterografted seedlings, including substantial changes in jasmonic acid (JA) biosynthesis and signaling, which were validated by RT-qPCR analysis. S. habrochaites plants had a high basal level of jasmonate, and cold stress caused a greater amount of active JA-isoleucine in S. habrochaites heterografts. Moreover, exogenous JA enhanced while JA inhibitor decreased the cold tolerance of tomato grafts. The JA biosynthesis-defective mutant spr8 also showed increased sensitivity to cold stress. All of these results demonstrated the significance of JA in the cold tolerance of grafted tomato seedlings with S. habrochaites rootstock, suggesting a future direction for the characterization of the natural variation involved in S. habrochaites rootstock-mediated cold tolerance.
Collapse
Affiliation(s)
- Lihui Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Bo Wu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Guoyu Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hui Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Yuquan Peng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hamza Sohail
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Shouyu Geng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Guangbao Luo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Dandi Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | | | | |
Collapse
|
5
|
Han Q, Song H, Yang C, Zhang S, Korpelainen H, Li C. Integrated DNA methylation, transcriptome and physiological analyses reveal new insights into superiority of poplars formed by interspecific grafting. TREE PHYSIOLOGY 2022; 42:1481-1500. [PMID: 35134240 DOI: 10.1093/treephys/tpac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Plant grafting has a long history and it is extensively employed to improve plant performance. In our previous research, reciprocal grafts of Populus cathayana Rehder (C) and Populus deltoides Bart. Ex Marsh (D) were generated. The results showed that interspecific grafting combinations (scion/rootstock: C/D and D/C) grew better than intraspecific grafting combinations (C/C and D/D). To further understand differences in molecular mechanisms between interspecific and intraspecific grafting, we performed an integrated analysis, including bisulfite sequencing, RNA sequencing and measurements of physiological indicators, to investigate leaves of different grafting combinations. We found that the difference at the genome-wide methylation level was greater in D/C vs D/D than in C/D vs C/C, but no difference was detected at the transcription level in D/C vs D/D. Furthermore, the grafting superiority of D/C vs D/D was not as strong as that of C/D vs C/C. These results may be associated with the different methylation forms, mCHH (71.76%) and mCG (57.16%), that accounted for the highest percentages in C/D vs C/C and D/C vs D/D, respectively. In addition, the interspecific grafting superiority was found mainly related to the process of photosynthesis, phytohormone signal transduction, biosynthesis of secondary metabolites, cell wall and transcriptional regulation based on both physiological and molecular results. Overall, the results indicated that the physiological and molecular phenotypes of grafted plants are affected by the interaction between scion and rootstock. Thus, our study provides a theoretical basis for developing suitable scion-rootstock combinations for grafted plants.
Collapse
Affiliation(s)
- Qingquan Han
- Institute of Physical Education, Ludong University, Yantai 264025, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Haifeng Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Congcong Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki FI-00014, Finland
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Bonarota MS, Kosma DK, Barrios-Masias FH. Salt tolerance mechanisms in the Lycopersicon clade and their trade-offs. AOB PLANTS 2022; 14:plab072. [PMID: 35079327 PMCID: PMC8782609 DOI: 10.1093/aobpla/plab072] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/29/2021] [Indexed: 05/08/2023]
Abstract
Salt stress impairs growth and yield in tomato, which is mostly cultivated in arid and semi-arid areas of the world. A number of wild tomato relatives (Solanum pimpinellifolium, S. pennellii, S. cheesmaniae and S. peruvianum) are endemic to arid coastal areas and able to withstand higher concentration of soil salt concentrations, making them a good genetic resource for breeding efforts aimed at improving salt tolerance and overall crop improvement. However, the complexity of salt stress response makes it difficult to introgress tolerance traits from wild relatives that could effectively increase tomato productivity under high soil salt concentrations. Under commercial production, biomass accumulation is key for high fruit yields, and salt tolerance management strategies should aim to maintain a favourable plant water and nutrient status. In this review, we first compare the effects of salt stress on the physiology of the domesticated tomato and its wild relatives. We then discuss physiological and energetic trade-offs for the different salt tolerance mechanisms found within the Lycopersicon clade, with a focus on the importance of root traits to sustain crop productivity.
Collapse
Affiliation(s)
- Maria-Sole Bonarota
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Felipe H Barrios-Masias
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
- Corresponding author’s e-mail address:
| |
Collapse
|