1
|
Eljebbawi A, Dolata A, Strotmann VI, Stahl Y. Stem cell quiescence and dormancy in plant meristems. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6022-6036. [PMID: 38721716 PMCID: PMC11480668 DOI: 10.1093/jxb/erae201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/08/2024] [Indexed: 10/17/2024]
Abstract
Plants exhibit opportunistic developmental patterns, alternating between growth and dormancy in response to external cues. Moreover, quiescence plays a critical role in proper plant growth and development, particularly within the root apical meristem and the shoot apical meristem. In these meristematic tissues, cells with relatively slower mitotic activity are present in the quiescent center and the central zone, respectively. These centers form long-term reservoirs of stem cells maintaining the meristematic stem cell niche, and thus sustaining continuous plant development and adaptation to changing environments. This review explores early observations, structural characteristics, functions, and gene regulatory networks of the root and shoot apical meristems. It also highlights the intricate mechanism of dormancy within the shoot apical meristem. The aim is to contribute to a holistic understanding of quiescence in plants, which is fundamental for the proper growth and environmental response of plants.
Collapse
Affiliation(s)
| | | | - Vivien I Strotmann
- Institute for Developmental Genetics, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
2
|
Noureddine J, Mu B, Hamidzada H, Mok WL, Bonea D, Nambara E, Zhao R. Knockout of endoplasmic reticulum-localized molecular chaperone HSP90.7 impairs seedling development and cellular auxin homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:218-236. [PMID: 38565312 DOI: 10.1111/tpj.16754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
The Arabidopsis endoplasmic reticulum-localized heat shock protein HSP90.7 modulates tissue differentiation and stress responses; however, complete knockout lines have not been previously reported. In this study, we identified and analyzed a mutant allele, hsp90.7-1, which was unable to accumulate the HSP90.7 full-length protein and showed seedling lethality. Microscopic analyses revealed its essential role in male and female fertility, trichomes and root hair development, proper chloroplast function, and apical meristem maintenance and differentiation. Comparative transcriptome and proteome analyses also revealed the role of the protein in a multitude of cellular processes. Particularly, the auxin-responsive pathway was specifically downregulated in the hsp90.7-1 mutant seedlings. We measured a much-reduced auxin content in both root and shoot tissues. Through comprehensive histological and molecular analyses, we confirmed PIN1 and PIN5 accumulations were dependent on the HSP90 function, and the TAA-YUCCA primary auxin biosynthesis pathway was also downregulated in the mutant seedlings. This study therefore not only fulfilled a gap in understanding the essential role of HSP90 paralogs in eukaryotes but also provided a mechanistic insight on the ER-localized chaperone in regulating plant growth and development via modulating cellular auxin homeostasis.
Collapse
Affiliation(s)
- Jenan Noureddine
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Bona Mu
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Homaira Hamidzada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Wai Lam Mok
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Diana Bonea
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Eiji Nambara
- Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rongmin Zhao
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
García-Gómez ML, Ten Tusscher K. Multi-scale mechanisms driving root regeneration: From regeneration competence to tissue repatterning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38824611 DOI: 10.1111/tpj.16860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
Plants possess an outstanding capacity to regenerate enabling them to repair damages caused by suboptimal environmental conditions, biotic attacks, or mechanical damages impacting the survival of these sessile organisms. Although the extent of regeneration varies greatly between localized cell damage and whole organ recovery, the process of regeneration can be subdivided into a similar sequence of interlinked regulatory processes. That is, competence to regenerate, cell fate reprogramming, and the repatterning of the tissue. Here, using root tip regeneration as a paradigm system to study plant regeneration, we provide a synthesis of the molecular responses that underlie both regeneration competence and the repatterning of the root stump. Regarding regeneration competence, we discuss the role of wound signaling, hormone responses and synthesis, and rapid changes in gene expression observed in the cells close to the cut. Then, we consider how this rapid response is followed by the tissue repatterning phase, where cells experience cell fate changes in a spatial and temporal order to recreate the lost stem cell niche and columella. Lastly, we argue that a multi-scale modeling approach is fundamental to uncovering the mechanisms underlying root regeneration, as it allows to integrate knowledge of cell-level gene expression, cell-to-cell transport of hormones and transcription factors, and tissue-level growth dynamics to reveal how the bi-directional feedbacks between these processes enable self-organized repatterning of the root apex.
Collapse
Affiliation(s)
- Monica L García-Gómez
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Experimental and Computational Plant Development Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- CropXR Institute, Utrecht, The Netherlands
- Translational Plant Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Kirsten Ten Tusscher
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Experimental and Computational Plant Development Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- CropXR Institute, Utrecht, The Netherlands
| |
Collapse
|
4
|
Pérez-Sancho J, Van den Broeck L, García-Caparros P, Sozzani R. Insights into multilevel spatial regulation within the root stem cell niche. Curr Opin Genet Dev 2024; 86:102200. [PMID: 38704928 DOI: 10.1016/j.gde.2024.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
All differentiated root cells derive from stem cells spatially organized within the stem cell niche (SCN), a microenvironment located within the root tip. Here, we compiled recent advances in the understanding of how the SCN drives the establishment and maintenance of cell types. The quiescent center (QC) is widely recognized as the primary driver of cell fate determination, but it is recently considered a convergence center of multiple signals. Cell identity of the cortex endodermis initials is mainly driven by the regulatory feedback loops between transcription factors (TFs), acting as mobile signals between neighboring cells, including the QC. As exemplified in the vascular initials, the precise spatial expression of these regulatory TFs is connected with a dynamic hormonal interplay. Thus, stem cell maintenance and cell differentiation are regulated by a plethora of signals forming a complex, multilevel regulatory network. Integrating the transcriptional and post-translational regulations, protein-protein interactions, and mobile signals into models will be fundamental for the comprehensive understanding of SCN maintenance and differentiation.
Collapse
Affiliation(s)
| | - Lisa Van den Broeck
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA. https://twitter.com/@LisaVandenBroec
| | | | - Rosangela Sozzani
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
5
|
Mira MM, El-Khateeb EA, Youssef MS, Ciacka K, So K, Duncan RW, Hill RD, Stasolla C. Arabidopsis root apical meristem survival during waterlogging is determined by phytoglobin through nitric oxide and auxin. PLANTA 2023; 258:86. [PMID: 37747517 DOI: 10.1007/s00425-023-04239-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
MAIN CONCLUSION Over-expression of phytoglobin mitigates the degradation of the root apical meristem (RAM) caused by waterlogging through changes in nitric oxide and auxin distribution at the root tip. Plant performance to waterlogging is ameliorated by the over-expression of the Arabidopsis Phytoglobin 1 (Pgb1) which also contributes to the maintenance of a functional RAM. Hypoxia induces accumulation of ROS and damage in roots of wild type plants; these events were preceded by the exhaustion of the RAM resulting from the loss of functionality of the WOX5-expressing quiescent cells (QCs). These phenotypic deviations were exacerbated by suppression of Pgb1 and attenuated when the same gene was up-regulated. Genetic and pharmacological studies demonstrated that degradation of the RAM in hypoxic roots is attributed to a reduction in the auxin maximum at the root tip, necessary for the specification of the QC. This reduction was primarily caused by alterations in PIN-mediated auxin flow but not auxin synthesis. The expression and localization patterns of several PINs, including PIN1, 2, 3 and 4, facilitating the basipetal translocation of auxin and its distribution at the root tip, were altered in hypoxic WT and Pgb1-suppressing roots but mostly unchanged in those over-expressing Pgb1. Disruption of PIN1 and PIN2 signal in hypoxic roots suppressing Pgb1 initiated in the transition zone at 12 h and was specifically associated to the absence of Pgb1 protein in the same region. Exogenous auxin restored a functional RAM, while inhibition of the directional auxin flow exacerbated the degradation of the RAM. The regulation of root behavior by Pgb1 was mediated by nitric oxide (NO) in a model consistent with the recognized function of Pgbs as NO scavengers. Collectively, this study contributes to our understanding of the role of Pgbs in preserving root meristem function and QC niche during conditions of stress, and suggests that the root transition zone is most vulnerable to hypoxia.
Collapse
Affiliation(s)
- Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Eman A El-Khateeb
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed S Youssef
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Botany and Microbiology, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Katarzyna Ciacka
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Kenny So
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Robert W Duncan
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
6
|
SCR Suppressor Mutants: Role in Hypocotyl Gravitropism and Root Growth in Arabidopsis thaliana. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The SCARECROW (SCR) transcription factor plays a key role in plant growth and development. However, we know very little about the role of SCR regulated pathways in plant development. Here, we used the homozygous scr1 mutant Arabidopsis thaliana (Wassilewskija ecotype), which had a T-DNA insertion in the SCR coding region and lacks a detectable SCR transcript. This scr1 mutant has a determinate mode of root growth, shoot agravitropism and abnormal internal architecture in all organs examined. To screen for mutants that suppress the scr1 abnormal phenotypes, we exposed homozygous scr1 seeds to ethyl methane sulphonate (EMS) mutagen. Upon growth out of these mutagenized seeds, thirteen suppressor mutant-harboring strains were identified. All thirteen suppressor-harboring strains were homozygous for scr1 and lacked the SCR transcript. Ten scr hypocotyl gravitropic suppressor lines showed improved hypocotyl gravitropic response. These ten suppressors fall into six complementation groups suggesting six different gene loci. Similarly, three independent scr root length suppressor lines rescued only the root growth phenotype and fell into three complementation groups, suggesting the involvement of three different gene loci. These suppressors might identify novel functions of the SCR gene in plant development.
Collapse
|
7
|
Abstract
Root system architecture is an important determinant of below-ground resource capture and hence overall plant fitness. The plant hormone auxin plays a central role in almost every facet of root development from the cellular to the whole-root-system level. Here, using Arabidopsis as a model, we review the multiple gene signaling networks regulated by auxin biosynthesis, conjugation, and transport that underpin primary and lateral root development. We describe the role of auxin in establishing the root apical meristem and discuss how the tight spatiotemporal regulation of auxin distribution controls transitions between cell division, cell growth, and differentiation. This includes the localized reestablishment of mitotic activity required to elaborate the root system via the production of lateral roots. We also summarize recent discoveries on the effects of auxin and auxin signaling and transport on the control of lateral root gravitropic setpoint angle (GSA), a critical determinant of the overall shape of the root system. Finally, we discuss how environmental conditions influence root developmental plasticity by modulation of auxin biosynthesis, transport, and the canonical auxin signaling pathway.
Collapse
Affiliation(s)
- Suruchi Roychoudhry
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefan Kepinski
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
8
|
Strotmann VI, Stahl Y. At the root of quiescence: function and regulation of the quiescent center. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6716-6726. [PMID: 34111273 DOI: 10.1093/jxb/erab275] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
The quiescent center (QC) of roots consists of a rarely dividing pool of stem cells within the root apical meristem (RAM). The QC maintains the surrounding more frequently dividing initials, together constituting the stem cell niche of the RAM. The initials, after several rounds of division and differentiation, give rise to nearly all tissues necessary for root function. Hence, QC establishment, maintenance, and function are key for producing the whole plant root system and are therefore at the foundation of plant growth and productivity. Although the concept of the QC has been known since the 1950s, much of its molecular regulations and their intricate interconnections, especially in more complex root systems such as cereal RAMs, remain elusive. In Arabidopsis, molecular factors such as phytohormones, small signaling peptides and their receptors, and key transcription factors play important roles in a complex and intertwined regulatory network. In cereals, homologs of these factors are present; however, QC maintenance in the larger RAMs of cereals might also require more complex control of QC cell regulation by a combination of asymmetric and symmetric divisions. Here, we summarize current knowledge on QC maintenance in Arabidopsis and compare it with that of agriculturally relevant cereal crops.
Collapse
Affiliation(s)
- Vivien I Strotmann
- Institute for Developmental Genetics, Heinrich-Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich-Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|