1
|
Andrijanić Z, Nazzicari N, Šarčević H, Sudarić A, Annicchiarico P, Pejić I. Genetic Diversity and Population Structure of European Soybean Germplasm Revealed by Single Nucleotide Polymorphism. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091837. [PMID: 37176892 PMCID: PMC10180984 DOI: 10.3390/plants12091837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Soybean is the most grown high-protein crop in the world. Despite the rapid increase of acreage and production volume, European soybean production accounts for only 34% of its consumption in Europe. This study aims to support the optimal exploitation of genetic resources by European breeding programs by investigating the genetic diversity and the genetic structure of 207 European cultivars or American introductions registered in Europe, which were genotyped by the SoySNP50K array. The expected heterozygosity (He) was 0.34 for the entire collection and ranged among countries from 0.24 for Swiss cultivars to 0.32 for American cultivars (partly reflecting differences in sample size between countries). Cluster analysis grouped all genotypes into two main clusters with eight subgroups that corresponded to the country of origin of cultivars and their maturity group. Pairwise Fst values between countries of origin showed the highest differentiation of Swiss cultivars from the rest of the European gene pool, while the lowest mean differentiation was found between American introductions and all other European countries. On the other hand, Fst values between maturity groups were much lower compared to those observed between countries. In analysis of molecular variance, the total genetic variation was partitioned either by country of origin or by maturity group, explaining 9.1% and 3.5% of the total genetic variance, respectively. On the whole, our results suggest that the European soybean gene pool still has sufficient diversity due to the different historical breeding practices in western and eastern countries and the relatively short period of breeding in Europe.
Collapse
Affiliation(s)
- Zoe Andrijanić
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Nelson Nazzicari
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Viale Piacenza 29, 26900 Lodi, Italy
| | - Hrvoje Šarčević
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Aleksandra Sudarić
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia
| | - Paolo Annicchiarico
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Viale Piacenza 29, 26900 Lodi, Italy
| | - Ivan Pejić
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Skovbjerg CK, Angra D, Robertson-Shersby-Harvie T, Kreplak J, Keeble-Gagnère G, Kaur S, Ecke W, Windhorst A, Nielsen LK, Schiemann A, Knudsen J, Gutierrez N, Tagkouli V, Fechete LI, Janss L, Stougaard J, Warsame A, Alves S, Khazaei H, Link W, Torres AM, O'Sullivan DM, Andersen SU. Genetic analysis of global faba bean diversity, agronomic traits and selection signatures. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:114. [PMID: 37074596 PMCID: PMC10115707 DOI: 10.1007/s00122-023-04360-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE We identified marker-trait associations for key faba bean agronomic traits and genomic signatures of selection within a global germplasm collection. Faba bean (Vicia faba L.) is a high-protein grain legume crop with great potential for sustainable protein production. However, little is known about the genetics underlying trait diversity. In this study, we used 21,345 high-quality SNP markers to genetically characterize 2678 faba bean genotypes. We performed genome-wide association studies of key agronomic traits using a seven-parent-MAGIC population and detected 238 significant marker-trait associations linked to 12 traits of agronomic importance. Sixty-five of these were stable across multiple environments. Using a non-redundant diversity panel of 685 accessions from 52 countries, we identified three subpopulations differentiated by geographical origin and 33 genomic regions subjected to strong diversifying selection between subpopulations. We found that SNP markers associated with the differentiation of northern and southern accessions explained a significant proportion of agronomic trait variance in the seven-parent-MAGIC population, suggesting that some of these traits were targets of selection during breeding. Our findings point to genomic regions associated with important agronomic traits and selection, facilitating faba bean genomics-based breeding.
Collapse
Affiliation(s)
- Cathrine Kiel Skovbjerg
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.
- Center for Quantitative Genetics and Genomics, Aarhus University, 8000, Aarhus, Denmark.
| | - Deepti Angra
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | | | - Jonathan Kreplak
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | - Sukhjiwan Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Wolfgang Ecke
- Department of Crop Sciences, Georg-August-University, Göttingen, Germany
| | - Alex Windhorst
- Georg-August-Universität Göttingen, DNPW, Carl-Sprengel 1, Germany
| | | | | | | | - Natalia Gutierrez
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo 3092, 14080, Córdoba, Spain
| | - Vasiliki Tagkouli
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Lavinia Ioana Fechete
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Luc Janss
- Center for Quantitative Genetics and Genomics, Aarhus University, 8000, Aarhus, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Ahmed Warsame
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Sheila Alves
- Crops Research, Teagasc, Oak Park, Carlow, Ireland
| | - Hamid Khazaei
- Production Systems, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Wolfgang Link
- Georg-August-Universität Göttingen, DNPW, Carl-Sprengel 1, Germany
| | - Ana Maria Torres
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo 3092, 14080, Córdoba, Spain
| | | | | |
Collapse
|
3
|
Ruperao P, Gandham P, Odeny DA, Mayes S, Selvanayagam S, Thirunavukkarasu N, Das RR, Srikanda M, Gandhi H, Habyarimana E, Manyasa E, Nebie B, Deshpande SP, Rathore A. Exploring the sorghum race level diversity utilizing 272 sorghum accessions genomic resources. FRONTIERS IN PLANT SCIENCE 2023; 14:1143512. [PMID: 37008459 PMCID: PMC10063887 DOI: 10.3389/fpls.2023.1143512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Due to evolutionary divergence, sorghum race populations exhibit significant genetic and morphological variation. A k-mer-based sorghum race sequence comparison identified the conserved k-mers of all 272 accessions from sorghum and the race-specific genetic signatures identified the gene variability in 10,321 genes (PAVs). To understand sorghum race structure, diversity and domestication, a deep learning-based variant calling approach was employed in a set of genotypic data derived from a diverse panel of 272 sorghum accessions. The data resulted in 1.7 million high-quality genome-wide SNPs and identified selective signature (both positive and negative) regions through a genome-wide scan with different (iHS and XP-EHH) statistical methods. We discovered 2,370 genes associated with selection signatures including 179 selective sweep regions distributed over 10 chromosomes. Co-localization of these regions undergoing selective pressure with previously reported QTLs and genes revealed that the signatures of selection could be related to the domestication of important agronomic traits such as biomass and plant height. The developed k-mer signatures will be useful in the future to identify the sorghum race and for trait and SNP markers for assisting in plant breeding programs.
Collapse
Affiliation(s)
- Pradeep Ruperao
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Prasad Gandham
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, LA, United States
| | - Damaris A. Odeny
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sean Mayes
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Nepolean Thirunavukkarasu
- Genomics and Molecular Breeding Lab, Indian Council of Agricultural Research (ICAR) - Indian Institute of Millets Research, Hyderabad, India
| | - Roma R. Das
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Manasa Srikanda
- Department of Statistics, Osmania University, Hyderabad, India
| | - Harish Gandhi
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Ephrem Habyarimana
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Eric Manyasa
- Sorghum Breeding Program, International Crops Research Institute for the Semi-Arid Tropics, Nairobi, Kenya
| | - Baloua Nebie
- International Maize and Wheat Improvement Center (CIMMYT), Dakar, Senegal
| | | | - Abhishek Rathore
- Excellence in Breeding, International Maize and Wheat Improvement Center (CIMMYT), Hyderabad, India
| |
Collapse
|
4
|
Saleem A, Roldán-Ruiz I, Aper J, Muylle H. Genetic control of tolerance to drought stress in soybean. BMC PLANT BIOLOGY 2022; 22:615. [PMID: 36575367 PMCID: PMC9795773 DOI: 10.1186/s12870-022-03996-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Drought stress limits the production of soybean [Glycine max (L.) Merr.], which is the most grown high-value legume crop worldwide. Breeding for drought tolerance is a difficult endeavor and understanding the genetic basis of drought tolerance in soybean is therefore crucial for harnessing the genomic regions involved in the tolerance mechanisms. A genome-wide association study (GWAS) analysis was applied in a soybean germplasm collection (the EUCLEG collection) of 359 accessions relevant for breeding in Europe, to identify genomic regions and candidate genes involved in the response to short duration and long duration drought stress (SDS and LDS respectively) in soybean. RESULTS The phenotypic response to drought was stronger in the long duration drought (LDS) than in the short duration drought (SDS) experiment. Over the four traits considered (canopy wilting, leaf senescence, maximum absolute growth rate and maximum plant height) the variation was in the range of 8.4-25.2% in the SDS, and 14.7-29.7% in the LDS experiments. The GWAS analysis identified a total of 17 and 22 significant marker-trait associations for four traits in the SDS and LDS experiments, respectively. In the genomic regions delimited by these markers we identified a total of 12 and 16 genes with putative functions that are of particular relevance for drought stress responses including stomatal movement, root formation, photosynthesis, ABA signaling, cellular protection and cellular repair mechanisms. Some of these genomic regions co-localized with previously known QTLs for drought tolerance traits including water use efficiency, chlorophyll content and photosynthesis. CONCLUSION Our results indicate that the mechanism of slow wilting in the SDS might be associated with the characteristics of the root system, whereas in the LDS, slow wilting could be due to low stomatal conductance and transpiration rates enabling a high WUE. Drought-induced leaf senescence was found to be associated to ABA and ROS responses. The QTLs related to WUE contributed to growth rate and canopy height maintenance under drought stress. Co-localization of several previously known QTLs for multiple agronomic traits with the SNPs identified in this study, highlights the importance of the identified genomic regions for the improvement of agronomic performance in addition to drought tolerance in the EUCLEG collection.
Collapse
Affiliation(s)
- Aamir Saleem
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090, Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Isabel Roldán-Ruiz
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090, Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Jonas Aper
- Protealis, Technologiepark-Zwijnaarde, Ghent, Belgium
| | - Hilde Muylle
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090, Melle, Belgium.
| |
Collapse
|
5
|
Petereit J, Marsh JI, Bayer PE, Danilevicz MF, Thomas WJW, Batley J, Edwards D. Genetic and Genomic Resources for Soybean Breeding Research. PLANTS (BASEL, SWITZERLAND) 2022; 11:1181. [PMID: 35567182 PMCID: PMC9101001 DOI: 10.3390/plants11091181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
Soybean (Glycine max) is a legume species of significant economic and nutritional value. The yield of soybean continues to increase with the breeding of improved varieties, and this is likely to continue with the application of advanced genetic and genomic approaches for breeding. Genome technologies continue to advance rapidly, with an increasing number of high-quality genome assemblies becoming available. With accumulating data from marker arrays and whole-genome resequencing, studying variations between individuals and populations is becoming increasingly accessible. Furthermore, the recent development of soybean pangenomes has highlighted the significant structural variation between individuals, together with knowledge of what has been selected for or lost during domestication and breeding, information that can be applied for the breeding of improved cultivars. Because of this, resources such as genome assemblies, SNP datasets, pangenomes and associated databases are becoming increasingly important for research underlying soybean crop improvement.
Collapse
Affiliation(s)
| | - Jacob I. Marsh
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.P.); (J.I.M.); (P.E.B.); (M.F.D.); (W.J.W.T.); (J.B.)
| | | | | | | | | | - David Edwards
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.P.); (J.I.M.); (P.E.B.); (M.F.D.); (W.J.W.T.); (J.B.)
| |
Collapse
|
6
|
Mendonça HC, Pereira LFP, Maldonado dos Santos JV, Meda AR, Sant’ Ana GC. Genetic Diversity and Selection Footprints in the Genome of Brazilian Soybean Cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:842571. [PMID: 35432410 PMCID: PMC9006619 DOI: 10.3389/fpls.2022.842571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Although Brazil is currently the largest soybean producer in the world, only a small number of studies have analyzed the genetic diversity of Brazilian soybean. These studies have shown the existence of a narrow genetic base. The objectives of this work were to analyze the population structure and genetic diversity, and to identify selection signatures in the genome of soybean germplasms from different companies in Brazil. A panel consisting of 343 soybean lines from Brazil, North America, and Asia was genotyped using genotyping by sequencing (GBS). Population structure was assessed by Bayesian and multivariate approaches. Genetic diversity was analyzed using metrics such as the fixation index, nucleotide diversity, genetic dissimilarity, and linkage disequilibrium. The software BayeScan was used to detect selection signatures between Brazilian and Asian accessions as well as among Brazilian germplasms. Region of origin, company of origin, and relative maturity group (RMG) all had a significant influence on population structure. Varieties belonging to the same company and especially to the same RMG exhibited a high level of genetic similarity. This result was exacerbated among early maturing accessions. Brazilian soybean showed significantly lower genetic diversity when compared to Asian accessions. This was expected, because the crop's region of origin is its main genetic diversity reserve. We identified 7 genomic regions under selection between the Brazilian and Asian accessions, and 27 among Brazilian varieties developed by different companies. Associated with these genomic regions, we found 96 quantitative trait loci (QTLs) for important soybean breeding traits such as flowering, maturity, plant architecture, productivity components, pathogen resistance, and seed composition. Some of the QTLs associated with the markers under selection have genes of great importance to soybean's regional adaptation. The results reported herein allowed to expand the knowledge about the organization of the genetic variability of the Brazilian soybean germplasm. Furthermore, it was possible to identify genomic regions under selection possibly associated with the adaptation of soybean to Brazilian environments.
Collapse
Affiliation(s)
| | - Luiz Filipe Protasio Pereira
- Centro de Ciências Biológicas, State University of Londrina, Londrina, Brazil
- Laboratório de Biotecnologia, Instituto de Desenvolvimento Rural do Paraná, Embrapa Café, Londrina, Brazil
| | | | | | | |
Collapse
|
7
|
Saleem A, Aper J, Muylle H, Borra-Serrano I, Quataert P, Lootens P, De Swaef T, Roldán-Ruiz I. Response of a Diverse European Soybean Collection to "Short Duration" and "Long Duration" Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:818766. [PMID: 35251088 PMCID: PMC8891225 DOI: 10.3389/fpls.2022.818766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Drought causes significant damage to a high value crop of soybean. Europe has an increasing demand for soybean and its own production is insufficient. Selection and breeding of cultivars adapted to European growth conditions is therefore urgently needed. These new cultivars must have a shorter growing cycle (specifically for adaptation to North-West Europe), high yield potential under European growing conditions, and sufficient drought resistance. We have evaluated the performance of a diverse collection of 359 soybean accessions under drought stress using rain-out shelters for 2 years. The contrasting weather conditions between years and correspondingly the varying plant responses demonstrated that the consequences of drought for an individual accession can vary strongly depending on the characteristics (e.g., duration and intensity) of the drought period. Short duration drought stress, for a period of four to 7 weeks, caused an average reduction of 11% in maximum canopy height (CH), a reduction of 17% in seed number per plant (SN) and a reduction of 16% in seed weight per plant (SW). Long duration drought stress caused an average reduction of 29% in CH, a reduction of 38% in SN and a reduction of 43% in SW. Drought accelerated plant development and caused an earlier cessation of flowering and pod formation. This seemed to help some accessions to better protect the seed yield, under short duration drought stress. Drought resistance for yield-related traits was associated with the maintenance of growth under long duration drought stress. The collection displayed a broad range of variation for canopy wilting and leaf senescence but a very narrow range of variation for crop water stress index (CWSI; derived from canopy temperature data). To the best of our knowledge this is the first study reporting a detailed investigation of the response to drought within a diverse soybean collection relevant for breeding in Europe.
Collapse
Affiliation(s)
- Aamir Saleem
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Jonas Aper
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Hilde Muylle
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Irene Borra-Serrano
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Paul Quataert
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Peter Lootens
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Tom De Swaef
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Isabel Roldán-Ruiz
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Genome-Wide Variation Analysis of Four Vegetable Soybean Cultivars Based on Re-Sequencing. PLANTS 2021; 11:plants11010028. [PMID: 35009032 PMCID: PMC8747356 DOI: 10.3390/plants11010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022]
Abstract
Vegetable soybean is a type of value-added specialty soybean, served as a fresh vegetable or snack in China. Due to the difference from other types, it is important to understand the genetic structure and diversity of vegetable soybean for further utilization in breeding programs. The four vegetable cultivars, Taiwan-75, Zhexiandou No. 8, Zhexian No. 9 and Zhexian No. 10 are popular soybean varieties planted in Zhejiang province, and have large pods and intermediate maturity. The clustering showed a close relationship of these four cultivars in simple sequence repeat analysis. To reveal the genome variation of vegetable soybean, these four improved lines were analyzed by whole-genome re-sequencing. The average sequencing depth was 7X and the coverage ratio of each cultivar was at least more than 94%. Compared with the reference genome, a large number of single-nucleotide polymorphisms, insertion/deletions and structure variations were identified with different chromosome distributions. The average heterozygosity rate of the single-nucleotide polymorphisms was 11.99% of these four cultivars. According to the enrichment analysis, there were 23,371 genes identified with putative modifications, and a total of 282 genes were related to carbohydrate metabolic processes. These results provide useful information for genetic research and future breeding, which can facilitate the selection procedures in vegetable soybean breeding.
Collapse
|