1
|
Cao X, Hao W, Pan W, Gao X, Xie J, Du L. A vacuolar protein MaSCPL1 mediates anthocyanin acylation modifications in blue-flowered grape hyacinth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112273. [PMID: 39321877 DOI: 10.1016/j.plantsci.2024.112273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
The grape hyacinth is renowned for its profuse blue flowers, which confer substantial scientific and ornamental significance as well as considerable potential for industrial applications. The serine carboxypeptidase-like acyltransferases (SCPL-ATs) family is crucial for the blue flower coloration. To elucidate SCPL-ATs involved in anthocyanin modification in grape hyacinth, we performed a transcriptomic analysis of grape hyacinth SCPL-ATs. Through gene expression profiling, we identified a promising candidate gene, MaSCPL1, whose expression patterns corresponded with variations in anthocyanin content throughout petal coloration. Subsequently, the functional role of the MaSCPL1 gene was validated using the native petal regeneration system, and the silencing of MaSCPL1 led to a decreased total anthocyanin content and Dp3MG content in grape hyacinth petals. Furthermore, we employed yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), and dual-luciferase assays to explore the regulatory interactions between the anthocyanin biosynthesis transcription factor MaMybA and the MaSCPL1 promoter. Our findings indicate that MaMybA can bind to the MaSCPL1 promoter and significantly activate its expression. Furthermore, the MaMybA-RNAi resulted in a substantial multifold reduction in the expression of MaSCPL1, implying that the regulation of MaSCPL1 expression is mediated by MaMybA. This study revealed the MaSCPL1 gene has been associated with anthocyanin acylated modification in grape hyacinth and elucidated the important role of the MaMybA-MaSCPL1 module in colouration grape hyacinth.
Collapse
Affiliation(s)
- Xiaoyun Cao
- College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wenhui Hao
- College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wanqi Pan
- College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xuelan Gao
- College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jingwen Xie
- College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Lingjuan Du
- College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Ou Z, Luo J, Qu Y. Exploring the molecular mechanism of coloration differences in two Meconopsis wilsonii subspecies: australis and orientalis. Dev Biol 2024; 505:1-10. [PMID: 37838025 DOI: 10.1016/j.ydbio.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Flower color diversity is a key taxonomic trait in Meconopsis species, enhancing their appeal as ornamental flowers. However, knowledge of the molecular mechanisms of flower color formation in Meconopsis species is still limited. M. wilsonii subsp. australis (Australis) and M. wilsonii subsp. orientalis (Orientalis) have a developmental stage presenting red-purple flowers, while Orientalis also presents blue coloration at the full-bloom period, making them an important model for exploring the mechanism of blue flower formation in M. wilsonii. In this study, we collected petals from Australis and Orientalis at different developmental stages to compare the coloration differences between the two species and detect the molecular mechanisms of blue color in Orientalis. We identified that cyanidin was the main anthocyanin in the flowers of both species, and the blue color in Orientalis primarily arises from anthocyanins (Cyanidin-3-O-sambubioside). RNA sequencing analysis was performed to detect the gene expression in the anthocyanin biosynthesis pathway, and the results suggested that gene regulation for anthocyanin biosynthesis may not be the direct reason for blue color formation in Orientalis. In addition, the growth solid of Orientalis was rich in Fe and Mg ions, and a large amount of Fe and Mg ions accumulated in the petals of Orientalis. Combined with the gene functional enrichment results, we found that the purple and red-purple colors of these two species were presented by different glycosylation levels of cyanidin, while the violet color of Orientalis might be the results of metalloanthocyanins by Fe and Mg ions, which also relieved the toxicity caused by the high content of Fe and Mg ions in its cells. The environmental adaptation-related genes were highly expressed of in both species, such as adaptation to desiccation, water deprivation, freezing, etc. Our results revealed the coloration differences between Australis and Orientalis and described the molecular mechanisms of blue coloration in Orientalis. The data in our analysis could enrich the genetic resources for M. wilsonii for further studies.
Collapse
Affiliation(s)
- Zhi Ou
- Southwest Engineering and Technology Research Center of Landscape Architecture (National Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Jun Luo
- Southwest Engineering and Technology Research Center of Landscape Architecture (National Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Yan Qu
- Southwest Engineering and Technology Research Center of Landscape Architecture (National Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Southwest Forestry University, Kunming, Yunnan, 650224, China.
| |
Collapse
|
3
|
Liu Y, Ce F, Tang H, Tian G, Yang L, Qian W, Dong H. Genome-wide analysis of the serine carboxypeptidase-like (SCPL) proteins in Brassica napus L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:310-321. [PMID: 35932655 DOI: 10.1016/j.plaphy.2022.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The serine carboxypeptidase-like protein (SCPL) family plays a key part in plant growth, development and stress responses. However, the serine carboxypeptidase-like (SCPL) proteins in Brassica napus L. (B. napus) have not been reported yet. Here, we identified a total of 117 putative SCPL genes in B. napus, which were unevenly distributed on all 19 chromosomes and were divided into three groups (carboxypeptidase Ⅰ to Ⅲ) according to their phylogenetic relationships. Synteny and duplication analysis revealed that the SCPL gene family of B. napus was amplified during allopolyploidization, in which the whole genome triplication and dispersed duplication played critical roles. After the separation of Brassica and Arabidopsis lineages, orthologous gene analysis showed that many SCPL genes were lost during the evolutionary process in B. rapa, B. oleracea and B. napus. Subsequently, the analyses of the gene structure, conserved motifs, cis-element and expression patterns showed that the members in the same group were highly conserved. Furthermore, candidate gene based association study suggested the role of BnSCPL52 in controlling seed number per silique, seed weight and silique length and a CAPS marker was developed to distinguish different haplotypes. Our results provide an overview of rapeseed SCPL genes that enable us for further functional research and benefit the marker-assisted breeding in Brassica napus.
Collapse
Affiliation(s)
- Yilin Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Fuquan Ce
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Huan Tang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Guifu Tian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Lei Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| | - Hongli Dong
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Yuan L, Niu H, Yun Y, Tian J, Lao F, Liao X, Gao Z, Ren D, Zhou L. Analysis of coloration characteristics of Tunisian soft-seed pomegranate arils based on transcriptome and metabolome. Food Chem 2022; 370:131270. [PMID: 34788951 DOI: 10.1016/j.foodchem.2021.131270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023]
Abstract
In this study, combining metabolome and transcriptome, color related attributes and phenolic compositions of Tunisian pomegranate arils from 7 Chinese regions at same developing stage were studied. The total anthocyanin (TAC), flavonoids, and percent polymeric color (PPC) were ranged at 8.93-28.41 mg/100 g arils, 37.55-69.72 mg/100 g arils, and 3.38-21.96%, respectively. In total, 51 phenolic compounds were characterized, most of which were markedly higher in reddish-purple pomegranate arils than those levels in reddish pomegranate arils. In contrast, the accumulation of tannins was significantly higher in reddish pomegranate arils. Among the 49 differentially expressed genes, 8 and 5 genes were matched to β-glucosidase and peroxidase, respectively. Correlation analysis showed that PPC was negatively correlated with 10 phenolic metabolites and TAC, positively correlated with L*, polymeric color, and 1 gene (|r| > 0.7, p < 0.01). Our results provide new insights for understanding the difference in coloration of pomegranate arils.
Collapse
Affiliation(s)
- Lei Yuan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Huihui Niu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Yurou Yun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Jun Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqing Gao
- Yunnan Institute of Horticultural Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan Province, China
| | - Dabing Ren
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China.
| |
Collapse
|
5
|
Gan S, Zheng G, Zhu S, Qian J, Liang L. Integrative Analysis of Metabolome and Transcriptome Reveals the Mechanism of Color Formation in Liriope spicata Fruit. Metabolites 2022; 12:metabo12020144. [PMID: 35208218 PMCID: PMC8879266 DOI: 10.3390/metabo12020144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Liriope spicata is an important ornamental ground cover plant, with a fruit color that turns from green to black during the development and ripening stages. However, the material basis and regulatory mechanism of the color variation remains unclear. In this study, a total of 31 anthocyanins and 2 flavonols were identified from the skin of L. spicata fruit via integrative analysis on the metabolome and transcriptome of three developmental stages. The pigments of black/mature fruits are composed of five common anthocyanin compounds, of which Peonidin 3–O–rutinoside and Delphinidin 3–O–glucoside are the most differential metabolites for color conversion. Using dual-omics joint analysis, the mechanism of color formation was obtained as follows. The expression of structural genes including 4CL, F3H, F3′H, F3′5′H and UFGT were activated due to the upregulation of transcription factor genes MYB and bHLH. As a result, a large amount of precursor substances for the synthesis of flavonoids accumulated. After glycosylation, stable pigments were generated which promoted the accumulation of anthocyanins and the formation of black skin.
Collapse
|
6
|
Vidana Gamage GC, Lim YY, Choo WS. Anthocyanins From Clitoria ternatea Flower: Biosynthesis, Extraction, Stability, Antioxidant Activity, and Applications. FRONTIERS IN PLANT SCIENCE 2021; 12:792303. [PMID: 34975979 PMCID: PMC8718764 DOI: 10.3389/fpls.2021.792303] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/25/2021] [Indexed: 05/02/2023]
Abstract
Clitoria ternatea plant is commonly grown as an ornamental plant and possesses great medicinal value. Its flower is edible and also known as blue pea or butterfly pea flower. The unique feature of anthocyanins present in blue pea flowers is the high abundance of polyacylated anthocyanins known as ternatins. Ternatins are polyacylated derivatives of delphinidin 3,3',5'-triglucoside. This review covers the biosynthesis, extraction, stability, antioxidant activity, and applications of anthocyanins from Clitoria ternatea flower. Hot water extraction of dried or fresh petals of blue pea flower could be employed successfully to extract anthocyanins from blue pea flower for food application. Blue pea flower anthocyanins showed good thermal and storage stability, but less photostability. Blue pea flower anthocyanins also showed an intense blue colour in acidic pH between pH 3.2 to pH 5.2. Blue pea flower anthocyanin extracts demonstrate significant in vitro and cellular antioxidant activities. Blue pea flower anthocyanins could be used as a blue food colourant in acidic and neutral foods. The incorporation of blue pea flower anthocyanins in food increased the functional properties of food such as antioxidant and antimicrobial properties. Blue pea flower anthocyanins have also been used in intelligent packaging. A comparison of blue pea flower anthocyanins with two other natural blue colouring agents used in the food industry, spirulina or phycocyanin and genipin-derived pigments is also covered. Anthocyanins from blue pea flowers are promising natural blue food colouring agent.
Collapse
Affiliation(s)
| | | | - Wee Sim Choo
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
7
|
Cui Y, Fan J, Lu C, Ren J, Qi F, Huang H, Dai S. ScGST3 and multiple R2R3-MYB transcription factors function in anthocyanin accumulation in Senecio cruentus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111094. [PMID: 34763879 DOI: 10.1016/j.plantsci.2021.111094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Anthocyanins are important flavonoid pigments involved in the colouring of flowers and fruits. They are synthesized on the cytoplasmic surface of the endoplasmic reticulum and transported into the vacuole for storage. Previous reports have suggested that glutathione S-transferase (GST) is involved in anthocyanin transport. However, due to the limitation of plant materials, most GSTs only participate in the cyanidin or delphinidin transport pathway. Here, an anthocyanin-related GST, ScGST3, was identified from the transcriptome of cineraria. The expression pattern of ScGST3 was highly consistent with anthocyanin accumulation in ray florets. Molecular complementation of Arabidopsis tt19 indicated that the overexpression of ScGST3 restores the anthocyanin-deficient phenotype of the mutant. Virus-induced gene silencing (VIGS) of ScGST3 in carmine and blue cineraria leaves could inhibit anthocyanin accumulation, further confirming the function of ScGST3 in anthocyanin accumulation. In vitro assays showed that ScGST3 increases the water solubility of cyanidin-3-O-glucoside (C3G) and delphinidin-3-O-glucosid (D3G). In addition, we also identified two anthocyanin-related MYB transcription factors, ScMYB3 and ScMYB6. The expression pattern of these two genes was also highly consistent with anthocyanin accumulation. Faded abaxial leaf phenotypes were observed after the silencing of ScMYB3 and ScMYB6, and the expression levels of partial structural genes were repressed. Based on the results from dual-luciferase assays and yeast one-hybrid assays, ScMYB3 can activate the promoter of ScGST3. Collectively, the transcription of ScGST3 is regulated by ScMYB3, which plays an important role in the transport of C3G and D3G in cineraria.
Collapse
Affiliation(s)
- Yumeng Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jiawei Fan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Chenfei Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jiangshan Ren
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Fangting Qi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - He Huang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Silan Dai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
8
|
Liu W, Feng Y, Yu S, Fan Z, Li X, Li J, Yin H. The Flavonoid Biosynthesis Network in Plants. Int J Mol Sci 2021; 22:ijms222312824. [PMID: 34884627 PMCID: PMC8657439 DOI: 10.3390/ijms222312824] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses.
Collapse
Affiliation(s)
- Weixin Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yi Feng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Suhang Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhengqi Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xinlei Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (J.L.); (H.Y.); Tel.: +86-571-6334-6372 (J.L.)
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (J.L.); (H.Y.); Tel.: +86-571-6334-6372 (J.L.)
| |
Collapse
|
9
|
Li X, Li Y, Zhao M, Hu Y, Meng F, Song X, Tigabu M, Chiang VL, Sederoff R, Ma W, Zhao X. Molecular and Metabolic Insights into Anthocyanin Biosynthesis for Leaf Color Change in Chokecherry ( Padus virginiana). Int J Mol Sci 2021; 22:ijms221910697. [PMID: 34639038 PMCID: PMC8509056 DOI: 10.3390/ijms221910697] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022] Open
Abstract
Chokecherry (Padus virginiana L.) is an important landscaping tree with high ornamental value because of its colorful purplish-red leaves (PRL). The quantifications of anthocyanins and the mechanisms of leaf color change in this species remain unknown. The potential biosynthetic and regulatory mechanisms and the accumulation patterns of anthocyanins in P. virginiana that determine three leaf colors were investigated by combined analysis of the transcriptome and the metabolome. The difference of chlorophyll, carotenoid and anthocyanin content correlated with the formation of P. virginiana leaf color. Using enrichment and correlation network analysis, we found that anthocyanin accumulation differed in different colored leaves and that the accumulation of malvidin 3-O-glucoside (violet) and pelargonidin 3-O-glucoside (orange-red) significantly correlated with the leaf color change from green to purple-red. The flavonoid biosynthesis genes (PAL, CHS and CHI) and their transcriptional regulators (MYB, HD-Zip and bHLH) exhibited specific increased expression during the purple-red periods. Two genes encoding enzymes in the anthocyanin biosynthetic pathway, UDP glucose-flavonoid 3-O-glucosyl-transferase (UFGT) and anthocyanidin 3-O-glucosyltransferase (BZ1), seem to be critical for suppressing the formation of the aforesaid anthocyanins. In PRL, the expression of the genes encoding for UGFT and BZ1 enzymes was substantially higher than in leaves of other colors and may be related with the purple-red color change. These results may facilitate genetic modification or selection for further improvement in ornamental qualities of P. virginiana.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Yan Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Minghui Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Yanbo Hu
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Fanjuan Meng
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Xingshun Song
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden;
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Correspondence: (W.M.); (X.Z.); Tel.: +86-451-82192225 (X.Z.)
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (W.M.); (X.Z.); Tel.: +86-451-82192225 (X.Z.)
| |
Collapse
|