1
|
Du W, Huang H, Kong W, Jiang W, Pang Y. Over-expression of Medicago Acyl-CoA-binding 2 genes enhance salt and drought tolerance in Arabidopsis. Int J Biol Macromol 2024; 268:131631. [PMID: 38631584 DOI: 10.1016/j.ijbiomac.2024.131631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Acyl-CoA-binding proteins (ACBPs) are mainly involved in acyl-CoA ester binding and trafficking in eukaryotic cells, and they function in lipid metabolism, membrane biosynthesis, cellular signaling, stress response, disease resistance, and other biological activities in plants. However, the roles of ACBP family members in Medicago remain unclear. In this study, a total of eight ACBP genes were identified in the genome of Medicago truncatula and Medicago sativa, and they were clustered into four sub-families (Class I-IV). Many cis-acting elements related to abiotic response were identified in the promoter region of these ACBP genes, in particular light-responsive elements. These ACBP genes exhibited distinct expression pattern in various tissues, and the expression level of MtACBP1/MsACBP1 and MtACBP2/MsACBP2 gene pairs were significantly increased under NaCl treatment. Subcellular localization analysis showed that MtACBP1/MsACBP1 and MtACBP2/MsACBP2 were localized in the endoplasmic reticulum of tobacco epidermal cells. Arabidopsis seedlings over-expressing MtACBP2/MsACBP2 displayed increased root length than the wild type under short light, Cu2+, ABA, PEG, and NaCl treatments. Over-expression of MtACBP2/MsACBP2 also significantly enhanced Arabidopsis tolerance under NaCl and PEG treatments in mature plants. Collectively, our study identified salt and drought responsive ACBP genes in Medicago and verified their functions in increasing resistance against salt and drought stresses.
Collapse
Affiliation(s)
- Wenxuan Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haijun Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiye Kong
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Moradi A, Lung SC, Chye ML. Interaction of Soybean ( Glycine max (L.) Merr.) Class II ACBPs with MPK2 and SAPK2 Kinases: New Insights into the Regulatory Mechanisms of Plant ACBPs. PLANTS (BASEL, SWITZERLAND) 2024; 13:1146. [PMID: 38674555 PMCID: PMC11055065 DOI: 10.3390/plants13081146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/06/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Plant acyl-CoA-binding proteins (ACBPs) function in plant development and stress responses, with some ACBPs interacting with protein partners. This study tested the interaction between two Class II GmACBPs (Glycine max ACBPs) and seven kinases, using yeast two-hybrid (Y2H) assays and bimolecular fluorescence complementation (BiFC). The results revealed that both GmACBP3.1 and GmACBP4.1 interact with two soybean kinases, a mitogen-activated protein kinase MPK2, and a serine/threonine-protein kinase SAPK2, highlighting the significance of the ankyrin-repeat (ANK) domain in facilitating protein-protein interactions. Moreover, an in vitro kinase assay and subsequent Phos-tag SDS-PAGE determined that GmMPK2 and GmSAPK2 possess the ability to phosphorylate Class II GmACBPs. Additionally, the kinase-specific phosphosites for Class II GmACBPs were predicted using databases. The HDOCK server was also utilized to predict the binding models of Class II GmACBPs with these two kinases, and the results indicated that the affected residues were located in the ANK region of Class II GmACBPs in both docking models, aligning with the findings of the Y2H and BiFC experiments. This is the first report describing the interaction between Class II GmACBPs and kinases, suggesting that Class II GmACBPs have potential as phospho-proteins that impact signaling pathways.
Collapse
Affiliation(s)
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China;
| |
Collapse
|
3
|
Hu P, Ren Y, Xu J, Luo W, Wang M, Song P, Guan Y, Hu H, Li C. Identification of acyl-CoA-binding protein gene in Triticeae species reveals that TaACBP4A-1 and TaACBP4A-2 positively regulate powdery mildew resistance in wheat. Int J Biol Macromol 2023; 246:125526. [PMID: 37379955 DOI: 10.1016/j.ijbiomac.2023.125526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Plant acyl-CoA-binding proteins (ACBPs), which contain the conserved ACB domain, participate in multiple biological processes, however, there are few reports on wheat ACBPs. In this study, the ACBP genes from nine different species were identified comprehensively. The expression patterns of TaACBP genes in multiple tissues and under various biotic stresses were determined by qRT-PCR. The function of selected TaACBP genes was studied by virus-induced gene silencing. A total of 67 ACBPs were identified from five monocotyledonous and four dicotyledonous species and divided into four classes. Tandem duplication analysis of the ACBPs suggested that tandem duplication events occurred in Triticum dicoccoides, but there was no tandem duplication event in wheat ACBP genes. Evolutionary analysis suggested that the TdACBPs may have experienced gene introgression during tetraploid evolution, while TaACBP gene loss events occurred during hexaploid wheat evolution. The expression pattern showed that all the TaACBP genes were expressed, and most of them were responsive to induction by Blumeria graminis f. sp. tritici or Fusarium graminearum. Silencing of TaACBP4A-1 and TaACBP4A-2 increased powdery mildew susceptibility in the common wheat BainongAK58. Furthermore, TaACBP4A-1, which belonged to class III, physically interacted with autophagy-related ubiquitin-like protein TaATG8g in yeast cells. This study provided a valuable reference for further investigations into the functional and molecular mechanisms of the ACBP gene family.
Collapse
Affiliation(s)
- Ping Hu
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China.
| | - Yueming Ren
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Jun Xu
- College of Landscape Architecture and Horticulture, Henan Institute of Science and Technology, Xinxiang, China
| | - Wanglong Luo
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Mengfei Wang
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Puwen Song
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China.
| | - Yuanyuan Guan
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Hu
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China.
| | - Chengwei Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China.
| |
Collapse
|
4
|
Chen Y, Fu M, Li H, Wang L, Liu R, Liu Z. Molecular Characterization of the Acyl-CoA-Binding Protein Genes Reveals Their Significant Roles in Oil Accumulation and Abiotic Stress Response in Cotton. Genes (Basel) 2023; 14:genes14040859. [PMID: 37107617 PMCID: PMC10137972 DOI: 10.3390/genes14040859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Members of the acyl-CoA-binding protein (ACBP) gene family play vital roles in diverse processes related to lipid metabolism, growth and development, and environmental response. Plant ACBP genes have been well-studied in a variety of species including Arabidopsis, soybean, rice and maize. However, the identification and functions of ACBP genes in cotton remain to be elucidated. In this study, a total of 11 GaACBP, 12 GrACBP, 20 GbACBP, and 19 GhACBP genes were identified in the genomes of Gossypium arboreum, Gossypium raimondii, Gossypium babardense, and Gossypium hirsutum, respectively, and grouped into four clades. Forty-nine duplicated gene pairs were identified in Gossypium ACBP genes, and almost all of which have undergone purifying selection during the long evolutionary process. In addition, expression analyses showed that most of the GhACBP genes were highly expressed in the developing embryos. Furthermore, GhACBP1 and GhACBP2 were induced by salt and drought stress based on a real-time quantitative PCR (RT-qPCR) assay, indicating that these genes may play an important role in salt- and drought-stress tolerance. This study will provide a basic resource for further functional analysis of the ACBP gene family in cotton.
Collapse
Affiliation(s)
- Yizhen Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Mingchuan Fu
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hao Li
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Liguo Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Renzhong Liu
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhanji Liu
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
5
|
Bioengineering of Soybean Oil and Its Impact on Agronomic Traits. Int J Mol Sci 2023; 24:ijms24032256. [PMID: 36768578 PMCID: PMC9916542 DOI: 10.3390/ijms24032256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Soybean is a major oil crop and is also a dominant source of nutritional protein. The 20% seed oil content (SOC) of soybean is much lower than that in most oil crops and the fatty acid composition of its native oil cannot meet the specifications for some applications in the food and industrial sectors. Considerable effort has been expended on soybean bioengineering to tailor fatty acid profiles and improve SOC. Although significant advancements have been made, such as the creation of high-oleic acid soybean oil and high-SOC soybean, those genetic modifications have some negative impacts on soybean production, for instance, impaired germination or low protein content. In this review, we focus on recent advances in the bioengineering of soybean oil and its effects on agronomic traits.
Collapse
|
6
|
Ling J, Li L, Lin L, Xie H, Zheng Y, Wan X. Genome-wide identification of acyl-CoA binding proteins and possible functional prediction in legumes. Front Genet 2023; 13:1057160. [PMID: 36704331 PMCID: PMC9871394 DOI: 10.3389/fgene.2022.1057160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Acyl-CoA-binding proteins (ACBPs), members of a vital housekeeping protein family, are present in various animal and plant species. They are divided into four classes: small ACBPs (class I), ankyrin-repeat ACBPs (class II), large ACBPs (class III), and kelch-ACBPs (class IV). Plant ACBPs play a pivotal role in intracellular transport, protection, and pool formation of acyl-CoA esters, promoting plant development and stress response. Even though legume crops are important for vegetable oils, proteins, vegetables and green manure, legume ACBPs are not well investigated. To comprehensively explore the functions of ACBPs in nine legumes (Lotus japonicus, Medicago truncatula, Glycine max, Vigna angularis, Vigna radiata, Phaseolus vulgaris, Arachis hypogaea, Arachis duranensis, and Arachis ipaensis), we conducted genome-wide identification of the ACBP gene family. Our evolutionary analyses included phylogenetics, gene structure, the conserved motif, chromosomal distribution and homology, subcellular localization, cis-elements, and interacting proteins. The results revealed that ACBP Orthologs of nine legumes had a high identity in gene structure and conserved motif. However, subcellular localization, cis-acting elements, and interaction protein analyses revealed potentially different functions from previously reported. The predicted results were also partially verified in Arachis hypogaea. We believe that our findings will help researchers understand the roles of ACBPs in legumes and encourage them to conduct additional research.
Collapse
|
7
|
Hamdan MF, Lung SC, Guo ZH, Chye ML. Roles of acyl-CoA-binding proteins in plant reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2918-2936. [PMID: 35560189 DOI: 10.1093/jxb/erab499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 06/15/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs) constitute a well-conserved family of proteins in eukaryotes that are important in stress responses and development. Past studies have shown that ACBPs are involved in maintaining, transporting and protecting acyl-CoA esters during lipid biosynthesis in plants, mammals, and yeast. ACBPs show differential expression and various binding affinities for acyl-CoA esters. Hence, ACBPs can play a crucial part in maintaining lipid homeostasis. This review summarizes the functions of ACBPs during the stages of reproduction in plants and other organisms. A comprehensive understanding on the roles of ACBPs during plant reproduction may lead to opportunities in crop improvement in agriculture.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
8
|
Lung SC, Lai SH, Wang H, Zhang X, Liu A, Guo ZH, Lam HM, Chye ML. Oxylipin signaling in salt-stressed soybean is modulated by ligand-dependent interaction of Class II acyl-CoA-binding proteins with lipoxygenase. THE PLANT CELL 2022; 34:1117-1143. [PMID: 34919703 PMCID: PMC8894927 DOI: 10.1093/plcell/koab306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/11/2021] [Indexed: 05/24/2023]
Abstract
Plant lipoxygenases (LOXs) oxygenate linoleic and linolenic acids, creating hydroperoxy derivatives, and from these, jasmonates and other oxylipins are derived. Despite the importance of oxylipin signaling, its activation mechanism remains largely unknown. Here, we show that soybean ACYL-COA-BINDING PROTEIN3 (ACBP3) and ACBP4, two Class II acyl-CoA-binding proteins, suppressed activity of the vegetative LOX homolog VLXB by sequestering it at the endoplasmic reticulum. The ACBP4-VLXB interaction was facilitated by linoleoyl-CoA and linolenoyl-CoA, which competed with phosphatidic acid (PA) for ACBP4 binding. In salt-stressed roots, alternative splicing produced ACBP variants incapable of VLXB interaction. Overexpression of the variants enhanced LOX activity and salt tolerance in Arabidopsis and soybean hairy roots, whereas overexpressors of the native forms exhibited reciprocal phenotypes. Consistently, the differential alternative splicing pattern in two soybean genotypes coincided with their difference in salt-induced lipid peroxidation. Salt-treated soybean roots were enriched in C32:0-PA species that showed high affinity to Class II ACBPs. We conclude that PA signaling and alternative splicing suppress ligand-dependent interaction of Class II ACBPs with VLXB, thereby triggering lipid peroxidation during salt stress. Hence, our findings unveil a dual mechanism that initiates the onset of oxylipin signaling in the salinity response.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sze Han Lai
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Haiyang Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiuying Zhang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ailin Liu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
9
|
Plant Acyl-CoA-Binding Proteins-Their Lipid and Protein Interactors in Abiotic and Biotic Stresses. Cells 2021; 10:cells10051064. [PMID: 33946260 PMCID: PMC8146436 DOI: 10.3390/cells10051064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Plants are constantly exposed to environmental stresses during their growth and development. Owing to their immobility, plants possess stress-sensing abilities and adaptive responses to cope with the abiotic and biotic stresses caused by extreme temperatures, drought, flooding, salinity, heavy metals and pathogens. Acyl-CoA-binding proteins (ACBPs), a family of conserved proteins among prokaryotes and eukaryotes, bind to a variety of acyl-CoA esters with different affinities and play a role in the transport and maintenance of subcellular acyl-CoA pools. In plants, studies have revealed ACBP functions in development and stress responses through their interactions with lipids and protein partners. This review summarises the roles of plant ACBPs and their lipid and protein interactors in abiotic and biotic stress responses.
Collapse
|