1
|
Eh TJ, Lei P, Phyon JM, Kim HI, Xiao Y, Ma L, Li J, Bai Y, Ji X, Jin G, Meng F. The AaERF64- AaTPPA module participates in cold acclimatization of Actinidia arguta (Sieb. et Zucc.) Planch ex Miq. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:43. [PMID: 38836186 PMCID: PMC11144688 DOI: 10.1007/s11032-024-01475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/04/2024] [Indexed: 06/06/2024]
Abstract
Actinidia arguta (A. arguta, kiwiberry) is a perennial deciduous vine with a strong overwintering ability. We hypothesized that trehalose metabolism, which plays a pivotal role in the stress tolerance of plants, may be involved in the cold acclimatization of A. arguta. Transcriptome analysis showed that the expression of AaTPPA, which encodes a trehalose-6-phosphate phosphatase (TPP), was upregulated in response to low temperatures. AaTPPA expression levels were much higher in lateral buds, roots, and stem cambia than in leaves in autumn. In AaTPPA-overexpressing (OE) Arabidopsis thaliana (A. thaliana), trehalose levels were 8-11 times higher than that of the wild type (WT) and showed different phenotypic characteristics from WT and OtsB (Escherichia coli TPP) overexpressing lines. AaTPPA-OE A. thaliana exhibited significantly higher freezing tolerance than WT and OtsB-OE lines. Transient overexpression of AaTPPA in A. arguta leaves increased the scavenging ability of reactive oxygen species (ROS) and the soluble sugar and proline contents. AaERF64, an ethylene-responsive transcription factor, was induced by ethylene treatment and bound to the GCC-box of the AaTPPA promoter to activate its expression. AaTPPA expression was also induced by abscisic acid. In summary, the temperature decrease in autumn is likely to induce AaERF64 expression through an ethylene-dependent pathway, which consequently upregulates AaTPPA expression, leading to the accumulation of osmotic protectants such as soluble sugars and proline in the overwintering tissues of A. arguta. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01475-8.
Collapse
Affiliation(s)
- Tong-Ju Eh
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
- School of Life Sciences, Kim Il Sung University, Pyongyang, 999093 Democratic People’s Republic of Korea
| | - Pei Lei
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Jong-Min Phyon
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
- School of Life Sciences, Kim Il Sung University, Pyongyang, 999093 Democratic People’s Republic of Korea
| | - Hyon-Il Kim
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
- School of Life Sciences, Kim Il Sung University, Pyongyang, 999093 Democratic People’s Republic of Korea
| | - Yue Xiao
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Le Ma
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Jianxin Li
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Yujing Bai
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Ximei Ji
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Guangze Jin
- Center for Ecological Research, Northeast Forestry University, Harbin, 150040 China
- Key Laboratory of Sustainable Forest Ecosystem Management Ministry of Education, Northeast Forestry University, Harbin, 150040 China
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, 150040 China
| | - Fanjuan Meng
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| |
Collapse
|
2
|
Blanford J, Zhai Z, Baer MD, Guo G, Liu H, Liu Q, Raugei S, Shanklin J. Molecular mechanism of trehalose 6-phosphate inhibition of the plant metabolic sensor kinase SnRK1. SCIENCE ADVANCES 2024; 10:eadn0895. [PMID: 38758793 PMCID: PMC11100557 DOI: 10.1126/sciadv.adn0895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
SUCROSE-NON-FERMENTING1-RELATED PROTEIN KINASE1 (SnRK1), a central plant metabolic sensor kinase, phosphorylates its target proteins, triggering a global shift from anabolism to catabolism. Molecular modeling revealed that upon binding of KIN10 to GEMINIVIRUS REP-INTERACTING KINASE1 (GRIK1), KIN10's activation T-loop reorients into GRIK1's active site, enabling its phosphorylation and activation. Trehalose 6-phosphate (T6P) is a proxy for cellular sugar status and a potent inhibitor of SnRK1. T6P binds to KIN10, a SnRK1 catalytic subunit, weakening its affinity for GRIK1. Here, we investigate the molecular details of T6P inhibition of KIN10. Molecular dynamics simulations and in vitro phosphorylation assays identified and validated the T6P binding site on KIN10. Under high-sugar conditions, T6P binds to KIN10, blocking the reorientation of its activation loop and preventing its phosphorylation and activation by GRIK1. Under these conditions, SnRK1 maintains only basal activity levels, minimizing phosphorylation of its target proteins, thereby facilitating a general shift from catabolism to anabolism.
Collapse
Affiliation(s)
- Jantana Blanford
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Zhiyang Zhai
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Marcel D. Baer
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Gongrui Guo
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hui Liu
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Qun Liu
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Simone Raugei
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
3
|
Sun J, Liu H, Blanford JK, Cai Y, Zhai Z, Shanklin J. GRIK phosphorylates and activates KIN10 which also promotes its degradation. FRONTIERS IN PLANT SCIENCE 2024; 15:1375471. [PMID: 38590740 PMCID: PMC10999582 DOI: 10.3389/fpls.2024.1375471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
The sensor kinase Sucrose Non-fermenting-1-Related Kinase 1 (SnRK1) plays a central role in energy and metabolic homeostasis. KIN10 is a major catalytic (α) kinase subunit of SnRK1 regulated by transcription, posttranslational modification, targeted protein degradation, and its subcellular localization. Geminivirus Rep Interacting Kinase 1 and 2 (GRIK1 and 2) are immediate upstream kinases of KIN10. In the transient protein expression assays carried out in Nicotiana benthamiana (N. benthamiana) leaves, GRIK1 not only phosphorylates KIN10 but also simultaneously initiates its degradation. Posttranslational GRIK-mediated KIN10 degradation is dependent on both GRIK kinase activity and phosphorylation of the KIN10 T-loop. KIN10 proteins are significantly enriched in the grik1-1 grik2-1 double mutant, consistent with the transient assays in N. benthamiana. Interestingly. Among the enriched KIN10 proteins from grik1-1 grik2-1, is a longer isoform, putatively derived by alternative splicing which is barely detectable in wild-type plants. The reduced stability of KIN10 upon phosphorylation and activation by GRIK represents a mechanism that enables the KIN10 activity to be rapidly reduced when the levels of intracellular sugar/energy are restored to their set point, representing an important homeostatic control that prevents a metabolic overreaction to low-sugar conditions. Since GRIKs are activating kinases of KIN10, KIN10s in the grik1 grik2 double null mutant background remain un-phosphorylated, with only their basal level of activity, are more stable, and therefore increase in abundance, which also explains the longer isoform KIN10L which is a minor isoform in wild type is clearly detected in the grik1 grik2 double mutant.
Collapse
|
4
|
Kerbler SML, Armijos-Jaramillo V, Lunn JE, Vicente R. The trehalose 6-phosphate phosphatase family in plants. PHYSIOLOGIA PLANTARUM 2023; 175:e14096. [PMID: 38148193 DOI: 10.1111/ppl.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 12/28/2023]
Abstract
Trehalose 6-phosphate (Tre6P), the intermediate of trehalose biosynthesis, is an essential signalling metabolite linking plant growth and development to carbon metabolism. While recent work has focused predominantly on the enzymes that produce Tre6P, little is known about the proteins that catalyse its degradation, the trehalose 6-phosphate phosphatases (TPPs). Often occurring in large protein families, TPPs exhibit cell-, tissue- and developmental stage-specific expression patterns, suggesting important regulatory functions in controlling local levels of Tre6P and trehalose as well as Tre6P signalling. Furthermore, growing evidence through gene expression studies and transgenic approaches shows that TPPs play an important role in integrating environmental signals with plant metabolism. This review highlights the large diversity of TPP isoforms in model and crop plants and identifies how modulating Tre6P metabolism in certain cell types, tissues, and at different developmental stages may promote stress tolerance, resilience and increased crop yield.
Collapse
Affiliation(s)
- Sandra Mae-Lin Kerbler
- Leibniz-Institute für Gemüse- und Zierpflanzenbau, Groβbeeren, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Vinicio Armijos-Jaramillo
- Grupo de Bio-Quimioinformática, Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Rubén Vicente
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
5
|
Zhai Z, Blanford JK, Cai Y, Sun J, Liu H, Shi H, Schwender J, Shanklin J. CYCLIN-DEPENDENT KINASE 8 positively regulates oil synthesis by activating WRINKLED1 transcription. THE NEW PHYTOLOGIST 2023; 238:724-736. [PMID: 36683527 DOI: 10.1111/nph.18764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
CYCLIN-DEPENDENT KINASE 8 (CDK8), a component of the kinase module of the Mediator complex in Arabidopsis, is involved in many processes, including flowering, plant defense, drought, and energy stress responses. Here, we investigated cdk8 mutants and CDK8-overexpressing lines to evaluate whether CDK8 also plays a role in regulating lipid synthesis, an energy-demanding anabolism. Quantitative lipid analysis demonstrated significant reductions in lipid synthesis rates and lipid accumulation in developing siliques and seedlings of cdk8, and conversely, elevated lipid contents in wild-type seed overexpressing CDK8. Transactivation assays show that CDK8 is necessary for maximal transactivation of the master seed oil activator WRINKLED1 (WRI1) by the seed maturation transcription factor ABSCISIC ACID INSENSITIVE3, supporting a direct regulatory role of CDK8 in oil synthesis. Thermophoretic studies show GEMINIVIRUS REP INTERACTING KINASE1, an activating kinase of KIN10 (a catalytic subunit of SUCROSE NON-FERMENTING1-RELATED KINASE1), physically interacts with CDK8, resulting in its phosphorylation and degradation in the presence of KIN10. This work defines a mechanism whereby, once activated, KIN10 downregulates WRI1 expression and suppresses lipid synthesis via promoting the degradation of CDK8. The KIN10-CDK8-dependent regulation of lipid synthesis described herein is additional to our previously reported KIN10-dependent phosphorylation and degradation of WRI1.
Collapse
Affiliation(s)
- Zhiyang Zhai
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Jantana K Blanford
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Yingqi Cai
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Jing Sun
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Hui Liu
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Hai Shi
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Jorg Schwender
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| |
Collapse
|
6
|
Yu X, Liu X, Wang Y, Zhang Y, Shen H, Yang L. Transcriptomic Analysis of Hormone Signal Transduction, Carbohydrate Metabolism, Heat Shock Proteins, and SCF Complexes before and after Fertilization of Korean Pine Ovules. Int J Mol Sci 2023; 24:ijms24076570. [PMID: 37047551 PMCID: PMC10094794 DOI: 10.3390/ijms24076570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The fertilization process is a critical step in plant reproduction. However, the mechanism of action and mode of regulation of the fertilization process in gymnosperms remain unclear. In this study, we investigated the molecular regulatory networks involved in the fertilization process in Korean pine ovules through anatomical observation, physiological and biochemical assays, and transcriptome sequencing technology. The morphological and physiological results indicated that fertilization proceeds through the demise of the proteinaceous vacuole, egg cell division, and pollen tube elongation. Auxin, cytokinin, soluble sugar, and soluble starch contents begin to decline upon fertilization. Transcriptomic data analysis revealed a large number of differentially expressed genes at different times before and after fertilization. These genes were primarily involved in pathways associated with plant hormone signal transduction, protein processing in the endoplasmic reticulum, fructose metabolism, and mannose metabolism. The expression levels of several key genes were further confirmed by qRT-PCR. These findings represent an important step towards understanding the mechanisms underlying morphological changes in the Korean pine ovule during fertilization, and the physiological and transcriptional analyses lay a foundation for in-depth studies of the molecular regulatory network of the Korean pine fertilization process.
Collapse
Affiliation(s)
- Xiaoqian Yu
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Xueqing Liu
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yuanxing Wang
- Jilin Provincial Academy of Forestry Sciences, Changchun 130033, China
| | - Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Hailong Shen
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin 150040, China
| | - Ling Yang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin 150040, China
| |
Collapse
|
7
|
Zhou W, Song S, Segla Koffi Dossou S, Zhou R, Wei X, Wang Z, Sheng C, Zhang Y, You J, Wang L. Genome-wide association analysis and transcriptome reveal novel loci and a candidate regulatory gene of fatty acid biosynthesis in sesame (Sesamum indicum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:220-231. [PMID: 35921726 DOI: 10.1016/j.plaphy.2022.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The regulatory mechanisms of fatty acid (FA) biosynthesis and triacylglycerols (TAGs) assembly remain largely misunderstood in sesame. Gas chromatography was used to analyze the natural variation in FA compositions and oil content (OC) in 400 sesame accessions grown in three different environments. The phenotypic data was associated with the newly released SNP data from whole-genome resequencing, and 43 significant loci for FA and OC were identified. Comparative transcriptomics analysis of high-OC and low-OC materials was performed, and 515 differentially expressed genes (DEGs) were identified across three seed developmental stages. By integrating the genome-wide association study (GWAS) and DEGs analysis, twenty candidate genes were identified, of which SiTPS1 (trehalose-6-phosphate synthase 1) has emerged as a key regulatory gene of FAs and TAGs metabolism in sesame. Overexpression of SiTPS1 in transgenic Arabidopsis influenced FA composition and significantly increased OC. Our study provides resources for the markers-based improvement of OC and quality in sesame and other crops.
Collapse
Affiliation(s)
- Wangyi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shengnan Song
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhijian Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Chen Sheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
8
|
Yang M, Ma L, Yang X, Li L, Chen S, Qi B, Wang Y, Li C, Yang S, Zhao Y. Bioinformatic Prediction and Characterization of Proteins in Porphyra dentata by Shotgun Proteomics. Front Nutr 2022; 9:924524. [PMID: 35873412 PMCID: PMC9301277 DOI: 10.3389/fnut.2022.924524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Porphyra dentata is an edible red seaweed with high nutritional value. It is widely cultivated and consumed in East Asia and has vast economic benefits. Studies have found that P. dentata is rich in bioactive substances and is a potential natural resource. In this study, label-free shotgun proteomics was first applied to identify and characterize different harvest proteins in P. dentata. A total of 13,046 different peptides were identified and 419 co-expression target proteins were characterized. Bioinformatics was used to study protein characteristics, functional expression, and interaction of two important functional annotations, amino acid, and carbohydrate metabolism. Potential bioactive peptides, protein structure, and potential ligand conformations were predicted, and the results suggest that bioactive peptides may be utilized as high-quality active fermentation substances and potential targets for drug production. Our research integrated the global protein database, the first time bioinformatic analysis of the P. dentata proteome during different harvest periods, improves the information database construction and provides a framework for future research based on a comprehensive understanding.
Collapse
Affiliation(s)
- Mingchang Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Lizhen Ma
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Bo Qi
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shaoling Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- *Correspondence: Yongqiang Zhao,
| |
Collapse
|
9
|
Guo X, He C, Cheng F, Zhong Y, Cheng X, Tao X. Dissection of Allelic Variation Underlying Floral and Fruit Traits in Flare Tree Peony ( Paeonia rockii) Using Association Mapping. Front Genet 2021; 12:664814. [PMID: 34456963 PMCID: PMC8385368 DOI: 10.3389/fgene.2021.664814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Allelic variation in floral quantitative traits, including the elements of flowers and fruits, is caused by extremely complex regulatory processes. In the genetic improvement of flare tree peony (Paeonia rockii), a unique ornamental and edible oil woody species in the genus Paeonia, a better understanding of the genetic composition of these complex traits related to flowers and fruits is needed. Therefore, we investigated the genetic diversity and population structure of 160 P. rockii accessions and conducted single-marker association analysis for 19 quantitative flower and fruit traits using 81 EST-SSR markers. The results showed that the population had a high phenotypic diversity (coefficients of variation, 11.87-110.64%) and a high level of genetic diversity (mean number of alleles, N A = 6.09). These accessions were divided into three subgroups by STRUCTURE analysis and a neighbor-joining tree. Furthermore, we also found a low level of linkage disequilibrium between these EST-SSRs and, by single-marker association analysis, identified 134 significant associations, including four flower traits with 11 EST-SSRs and 10 fruit traits with 32 EST-SSRs. Finally, based on the sequence alignment of the associated markers, P280, PS2, PS12, PS27, PS118, PS131, and PS145 may be considered potential loci to increase the yield of flare tree peony. These results laid the foundation for further analysis of the genetic structure of some key traits in P. rockii and had an obvious potential application value in marker-assisted selection breeding.
Collapse
Affiliation(s)
- Xin Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Peony International Institute, School of Landscape Architecture, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
| | - Chunyan He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Peony International Institute, School of Landscape Architecture, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
| | - Fangyun Cheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Peony International Institute, School of Landscape Architecture, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
| | - Yuan Zhong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Peony International Institute, School of Landscape Architecture, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
| | - Xinyun Cheng
- Beijing Guose Peony Technology Co. Ltd., Beijing, China
| | - Xiwen Tao
- Beijing Guose Peony Technology Co. Ltd., Beijing, China
| |
Collapse
|
10
|
Sun J, Chen T, Liu M, Zhao D, Tao J. Analysis and Functional Verification of PoWRI1 Gene Associated with Oil Accumulation Process in Paeonia ostii. Int J Mol Sci 2021; 22:ijms22136996. [PMID: 34209706 PMCID: PMC8267616 DOI: 10.3390/ijms22136996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022] Open
Abstract
The plant transcription factor WRINKLED1 (WRI1), a member of AP2/EREBP, is involved in the regulation of glycolysis and the expression of genes related to the de novo synthesis of fatty acids in plastids. In this study, the key regulator of seed oil synthesis and accumulation transcription factor gene PoWRI1 was identified and cloned, having a complete open reading frame of 1269 bp and encoding 422 amino acids. Subcellular localization analysis showed that PoWRI1 is located at the nucleus. After the expression vector of PoWRI1 was constructed and transformed into wild-type Arabidopsis thaliana, it was found that the overexpression of PoWRI1 increased the expression level of downstream target genes such as BCCP2, KAS1, and PKP-β1. As a result, the seeds of transgenic plants became larger, the oil content increased significantly, and the unsaturated fatty acid content increased, which provide a scientific theoretical basis for the subsequent use of genetic engineering methods to improve the fatty acid composition and content of plant seeds.
Collapse
Affiliation(s)
- Jing Sun
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.S.); (T.C.); (M.L.); (D.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Tian Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.S.); (T.C.); (M.L.); (D.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mi Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.S.); (T.C.); (M.L.); (D.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.S.); (T.C.); (M.L.); (D.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.S.); (T.C.); (M.L.); (D.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-0514-87997219
| |
Collapse
|