1
|
Hou Z, Huang H, Wang Y, Chen L, Yue L, Liu B, Kong F, Yang H. Molecular Regulation of Shoot Architecture in Soybean. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39254042 DOI: 10.1111/pce.15138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Soybean (Glycine max [L.] Merr.) serves as a major source of protein and oil for humans and animals. Shoot architecture, the spatial arrangement of a plant's above-ground organs, strongly affects crop yield and is therefore a critical agronomic trait. Unlike wheat and rice crops that have greatly benefitted from the Green Revolution, soybean yield has not changed significantly in the past six decades owing to its unique shoot architecture. Soybean is a pod-bearing crop with pods adhered to the nodes, and variation in shoot architecture traits, such as plant height, node number, branch number and number of seeds per pod, directly affects the number of pods and seeds per plant, thereby determining yield. In this review, we summarize the relationship between soybean yield and these major components of shoot architecture. We also describe the latest advances in identifying the genes and molecular mechanisms underlying soybean shoot architecture and discuss possible directions and approaches for breeding new soybean varieties with ideal shoot architecture and improved yield.
Collapse
Affiliation(s)
- Zhihong Hou
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Huan Huang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanan Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Liyu Chen
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lin Yue
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Hui Yang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
2
|
Sun J, Liu Y, Zheng Y, Xue Y, Fan Y, Ma X, Ji Y, Liu G, Zhang X, Li Y, Wang S, Tian Z, Zhao L. The MADS-box transcription factor GmFULc promotes GmZTL4 gene transcription to modulate maturity in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1603-1619. [PMID: 38869305 DOI: 10.1111/jipb.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/26/2024] [Accepted: 05/04/2024] [Indexed: 06/14/2024]
Abstract
Flowering time and maturity are crucial agronomic traits that affect the regional adaptability of soybean plants. The development of soybean cultivars with early maturity adapted to longer days and colder climates of high latitudes is very important for ensuring normal ripening before frost begins. FUL belongs to the MADS-box transcription factor family and has several duplicated members in soybeans. In this study, we observed that overexpression of GmFULc in the Dongnong 50 cultivar promoted soybean maturity, while GmFULc knockout mutants exhibited late maturity. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed that GmFULc could bind to the CArG, bHLH and homeobox motifs. Further investigation revealed that GmFULc could directly bind to the CArG motif in the promoters of the GmZTL3 and GmZTL4 genes. Overexpression of GmZTL4 promoted soybean maturity, whereas the ztl4 mutants exhibited delayed maturity. Moreover, we found that the cis element box 4 motif of the GmZTL4 promoter, a motif of light response elements, played an important role in controlling the growth period. Deletion of this motif shortened the growth period by increasing the expression levels of GmZTL4. Functional investigations revealed that short-day treatment promoted the binding of GmFULc to the promoter of GmZTL4 and inhibited the expression of E1 and E1Lb, ultimately resulting in the promotion of flowering and early maturation. Taken together, these findings suggest a novel photoperiod regulatory pathway in which GmFULc directly activates GmZTL4 to promote earlier maturity in soybean.
Collapse
Affiliation(s)
- Jingzhe Sun
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, The Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuhong Zheng
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun, 130033, China
| | - Yongguo Xue
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yuhuan Fan
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaofei Ma
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Yujia Ji
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Gaoyuan Liu
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoming Zhang
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Li
- Depatment of Environmental and Plant Biology, Ohio University, Athens, 45701, Ohio, USA
| | - Shuming Wang
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun, 130033, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
3
|
Zhou M, Li Y, Cheng Z, Zheng X, Cai C, Wang H, Lu K, Zhu C, Ding Y. Important Factors Controlling Gibberellin Homeostasis in Plant Height Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15895-15907. [PMID: 37862148 DOI: 10.1021/acs.jafc.3c03560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Plant height is an important agronomic trait that is closely associated with crop yield and quality. Gibberellins (GAs), a class of highly efficient plant growth regulators, play key roles in regulating plant height. Increasing reports indicate that transcriptional regulation is a major point of regulation of the GA pathways. Although substantial knowledge has been gained regarding GA biosynthetic and signaling pathways, important factors contributing to the regulatory mechanisms homeostatically controlling GA levels remain to be elucidated. Here, we provide an overview of current knowledge regarding the regulatory network involving transcription factors, noncoding RNAs, and histone modifications involved in GA pathways. We also discuss the mechanisms of interaction between GAs and other hormones in plant height development. Finally, future directions for applying knowledge of the GA hormone in crop breeding are described.
Collapse
Affiliation(s)
- Mei Zhou
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yakun Li
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhuowei Cheng
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xinyu Zheng
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Chong Cai
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Huizhen Wang
- Huangshan Institute of Product Quality Inspection, Huangshan 242700, China
| | - Kaixing Lu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo 315000, China
| | - Cheng Zhu
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yanfei Ding
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
4
|
Clark CB, Ma J. The genetic basis of shoot architecture in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:55. [PMID: 37351274 PMCID: PMC10281916 DOI: 10.1007/s11032-023-01391-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/26/2023] [Indexed: 06/24/2023]
Abstract
Shoot architecture refers to the three-dimensional body plan of the above ground organs of the plant. The patterning of this body plan results from the tight genetic control of the size and maintenance of meristems, the initiation of axillary growth, and the timing of developmental phase transition. Variation in shoot architecture can result in dramatic differences in plant productivity and/or grain yield due to their effects on light interception, photosynthetic efficiency, response to agronomic inputs, and environmental adaptation. The fine-tuning of shoot architecture has consequently been of great interest to plant breeders, driving the need for deeper understanding of the genes and molecular mechanisms governing these traits. In soybean, the world's most important oil and protein crop, major components of shoot architecture include stem growth habit, plant height, branch angle, branch number, leaf petiole angle, and the size and shape of leaves. Key genes underlying some of these traits have been identified to integrate hormonal, developmental, and environmental signals modulating the growth and orientation of shoot organs. Here we summarize the current knowledge and recent advances in the understanding of the genetic control of these important architectural traits in soybean.
Collapse
Affiliation(s)
- Chancelor B. Clark
- Department of Agronomy, Purdue University, 915 W Mitch Daniels Blvd, West Lafayette, 47907 IN USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, 915 W Mitch Daniels Blvd, West Lafayette, 47907 IN USA
- Center for Plant Biology, Purdue University, West Lafayette, IN USA
| |
Collapse
|
5
|
Yu H, Bhat JA, Li C, Zhao B, Guo T, Feng X. Genome-wide survey identified superior and rare haplotypes for plant height in the north-eastern soybean germplasm of China. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:22. [PMID: 37309452 PMCID: PMC10248691 DOI: 10.1007/s11032-023-01363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/18/2023] [Indexed: 06/14/2023]
Abstract
The proper and efficient utilization of natural genetic diversity can significantly impact crop improvements. Plant height is a quantitative trait governing the plant type as well as the yield and quality of soybean. Here, we used a combined approach including a genome-wide association study (GWAS) and haplotype and candidate gene analyses to explore the genetic basis of plant height in diverse natural soybean populations. For the GWAS analysis, we used the whole-genome resequencing data of 196 diverse soybean cultivars collected from different accumulated temperature zones of north-eastern China to detect the significant single-nucleotide polymorphisms (SNPs) associated with plant height across three environments (E1, E2, and E3). A total of 33 SNPs distributed on four chromosomes, viz., Chr.02, Chr.04, Chr.06, and Chr.19, were identified to be significantly associated with plant height across the three environments. Among them, 23 were consistently detected in two or more environments and the remaining 10 were identified in only one environment. Interestingly, all the significant SNPs detected on the respective chromosomes fell within the physical interval of linkage disequilibrium (LD) decay (± 38.9 kb). Hence, these genomic regions were considered to be four quantitative trait loci (QTLs), viz., qPH2, qPH4, qPH6, and qPH19, regulating plant height. Moreover, the genomic region flanking all significant SNPs on four chromosomes exhibited strong LD. These significant SNPs thus formed four haplotype blocks, viz., Hap-2, Hap-4, Hap-6, and Hap-19. The number of haplotype alleles underlying each block varied from four to six, and these alleles regulate the different phenotypes of plant height ranging from dwarf to extra-tall heights. Nine candidate genes were identified within the four haplotype blocks, and these genes were considered putative candidates regulating soybean plant height. Hence, these stable QTLs, superior haplotypes, and candidate genes (after proper validation) can be deployed for the development of soybean cultivars with desirable plant heights. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01363-7.
Collapse
Affiliation(s)
- Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- Zhejiang Lab, Hangzhou, 310012 China
| | | | - Candong Li
- Jiamusi Branch Academy of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007 China
| | - Beifang Zhao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
| | - Tai Guo
- Jiamusi Branch Academy of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007 China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- Zhejiang Lab, Hangzhou, 310012 China
| |
Collapse
|
6
|
Ogrodowicz P, Kuczyńska A, Krajewski P, Kempa M. The effects of heading time on yield performance and HvGAMYB expression in spring barley subjected to drought. J Appl Genet 2023; 64:289-302. [PMID: 36897474 PMCID: PMC10076406 DOI: 10.1007/s13353-023-00755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023]
Abstract
In the lifetime of a plant, flowering is not only an essential part of the reproductive process but also a critical developmental stage that can be vulnerable to environmental stresses. To ensure survival during drought, plants accelerate the flowering process, and this response is known as "drought escape." HvGAMYB-transcription factor associated, among others, with flowering process and anther development in barley-has also an important role in developmental modification and yield performance in plants subjected to stressed conditions. Due to the fact that information about the mechanisms associated both with the flowering acceleration and the anther or pollen disruption is limited, the exploration of the potential HvGAMYB role in flower development may shed light on pollen and spike morphology formations in plants grown under unfavorable water conditions. The aim of this study was to characterize differences in responses to drought among early- and late-heading barley genotypes. These two subgroups of plants-differentiated in terms of phenology-were analyzed, and traits linked to plant phenotype, physiology, and yield were investigated. In our study, the drought stress reactions of two barley subgroups showed a wide range of diversity in terms of yield performance, anther morphology, chlorophyll fluorescence kinetics, and pollen viability. The studied plants exhibited different yield performances under control and drought conditions. Moreover, the random distribution of genotypes on the biplot showing variability of OJIP parameters in the second developmental point of our investigation revealed that prolonged drought stress caused that among early- and late-heading plants, the studied genotypes exhibited different responses to applied stress conditions. The results of this study also showed that the HvGAMYB expression level was correlated positively with traits associated with lateral spike morphology in the second developmental point of this investigation, which showed that this association occurred only under prolonged drought and highlighted the drought stress duration effect on the HvGAMYB expression level.
Collapse
Affiliation(s)
- Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszynska street, 60-479, Poznan, Poland.
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszynska street, 60-479, Poznan, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszynska street, 60-479, Poznan, Poland
| | - Michał Kempa
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszynska street, 60-479, Poznan, Poland
| |
Collapse
|
7
|
Zhao L, Zou M, Jiang S, Dong X, Deng K, Na T, Wang J, Xia Z, Wang F. Insights into the Genetic Determination of the Autotetraploid Potato Plant Height. Genes (Basel) 2023; 14:507. [PMID: 36833433 PMCID: PMC9957462 DOI: 10.3390/genes14020507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Plant height is an important characteristic, the modification of which can improve the ability of stress adaptation as well as the yield. In this study, genome-wide association analysis was performed for plant height traits in 370 potato cultivars using the tetraploid potato genome as a reference. A total of 92 significant single nucleotide polymorphism (SNP) loci for plant height were obtained, which were particularly significant in haplotypes A3 and A4 on chromosome 1 and A1, A2, and A4 on chromosome 5. Thirty-five candidate genes were identified that were mainly involved in the gibberellin and brassinolide signal transduction pathways, including the FAR1 gene, methyltransferase, ethylene response factor, and ubiquitin protein ligase. Among them, PIF3 and GID1a were only present on chromosome 1, with PIF3 in all four haplotypes and GID1a in haplotype A3. This could lead to more effective genetic loci for molecular marker-assisted selection breeding as well as more precise localization and cloning of genes for plant height traits in potatoes.
Collapse
Affiliation(s)
- Long Zhao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Meiling Zou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Sirong Jiang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Xiaorui Dong
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Ke Deng
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Tiancang Na
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Jian Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Zhiqiang Xia
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Fang Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| |
Collapse
|
8
|
Kuzbakova M, Khassanova G, Oshergina I, Ten E, Jatayev S, Yerzhebayeva R, Bulatova K, Khalbayeva S, Schramm C, Anderson P, Sweetman C, Jenkins CLD, Soole KL, Shavrukov Y. Height to first pod: A review of genetic and breeding approaches to improve combine harvesting in legume crops. FRONTIERS IN PLANT SCIENCE 2022; 13:948099. [PMID: 36186054 PMCID: PMC9523450 DOI: 10.3389/fpls.2022.948099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Height from soil at the base of plant to the first pod (HFP) is an important trait for mechanical harvesting of legume crops. To minimise the loss of pods, the HFP must be higher than that of the blades of most combine harvesters. Here, we review the genetic control, morphology, and variability of HFP in legumes and attempt to unravel the diverse terminology for this trait in the literature. HFP is directly related to node number and internode length but through different mechanisms. The phenotypic diversity and heritability of HFP and their correlations with plant height are very high among studied legumes. Only a few publications describe a QTL analysis where candidate genes for HFP with confirmed gene expression have been mapped. They include major QTLs with eight candidate genes for HFP, which are involved in auxin transport and signal transduction in soybean [Glycine max (L.) Merr.] as well as MADS box gene SOC1 in Medicago trancatula, and BEBT or WD40 genes located nearby in the mapped QTL in common bean (Phaseolus vulgaris L.). There is no information available about simple and efficient markers associated with HFP, which can be used for marker-assisted selection for this trait in practical breeding, which is still required in the nearest future. To our best knowledge, this is the first review to focus on this significant challenge in legume-based cropping systems.
Collapse
Affiliation(s)
- Marzhan Kuzbakova
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Kazakhstan
| | - Gulmira Khassanova
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Kazakhstan
| | - Irina Oshergina
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Evgeniy Ten
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Kazakhstan
| | - Raushan Yerzhebayeva
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Kazakhstan
| | - Kulpash Bulatova
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Kazakhstan
| | - Sholpan Khalbayeva
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Kazakhstan
| | - Carly Schramm
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Peter Anderson
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Crystal Sweetman
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Colin L. D. Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Kathleen L. Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
9
|
Zhou X, Wang D, Mao Y, Zhou Y, Zhao L, Zhang C, Liu Y, Chen J. The Organ Size and Morphological Change During the Domestication Process of Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:913238. [PMID: 35755657 PMCID: PMC9221068 DOI: 10.3389/fpls.2022.913238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Soybean is one of the most important legume crops that can provide the rich source of protein and oil for human beings and livestock. In the twenty-one century, the total production of soybean is seriously behind the needs of a growing world population. Cultivated soybean [Glycine max (L.) Merr.] was domesticated from wild soybean (G. soja Sieb. and Zucc.) with the significant morphology and organ size changes in China around 5,000 years ago, including twisted stems to erect stems, small seeds to large seeds. Then it was spread worldwide to become one of the most popular and important crops. The release of the reference soybean genome and omics data provides powerful tools for researchers and breeders to dissect the functional genes and apply the germplasm in their work. Here, we summarized the function genes related to yield traits and organ size in soybean, including stem growth habit, leaf size and shape, seed size and weight. In addition, we also summarized the selection of organ traits during soybean domestication. In the end, we also discussed the application of new technology including the gene editing on the basic research and breeding of soybean, and the challenges and research hotspots in the future.
Collapse
Affiliation(s)
- Xuan Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongfa Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueqiong Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Limei Zhao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Chunbao Zhang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
10
|
Xue Y, Zhang Y, Shan J, Ji Y, Zhang X, Li W, Li D, Zhao L. Growth Repressor GmRAV Binds to the GmGA3ox Promoter to Negatively Regulate Plant Height Development in Soybean. Int J Mol Sci 2022; 23:1721. [PMID: 35163641 PMCID: PMC8836252 DOI: 10.3390/ijms23031721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 01/08/2023] Open
Abstract
Plant height is an important component of plant architecture, and significantly affects crop quality and yield. A soybean GmRAV (Related to ABI3/VP1) transcription factor containing both AP2 and B3 domains is a growth repressor. Three GmRAV-overexpressing (GmRAV-ox) transgenic lines displayed extremely shorter height and shortened internodes compared with control plants, whereas transgenic inhibition of GmRAV expression resulted in increased plant height. GmRAV-ox soybean plants showed a low active gibberellin level and the dwarf phenotype could be rescued by treatment with exogenous GA3 treatment. ChIP (Chromatin immunoprecipitation)-qPCR assay showed that GmRAV could directly regulate the expression of the GA4 biosynthetic genes GA3-oxidase (GmGA3ox) by binding two CAACA motifs in the GmGA3ox promoter. The GmGA3ox promoter was bound by GmRAV, whose expression levels in leaves were both elevated in GmRAV-i-3 and decreased in GmRAV-ox-7 soybean plants. Transient expression assay in N. benthamiana also showed that the proGmRAV:GmRAV-3F6H effector strongly repressed the expression of LUC reporter gene driven by GmGA3ox promoter containing two CAACA motifs. Together, our results suggested that GmRAV protein repressed the expression of GmGA3ox by directly binding to the two CAACA motifs in the promoter to limit soybean plant height.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongmei Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China; (Y.X.); (Y.Z.); (J.S.); (Y.J.); (X.Z.); (W.L.)
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China; (Y.X.); (Y.Z.); (J.S.); (Y.J.); (X.Z.); (W.L.)
| |
Collapse
|
11
|
Xu H, Guo Y, Qiu L, Ran Y. Progress in Soybean Genetic Transformation Over the Last Decade. FRONTIERS IN PLANT SCIENCE 2022; 13:900318. [PMID: 35755694 PMCID: PMC9231586 DOI: 10.3389/fpls.2022.900318] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/11/2022] [Indexed: 05/13/2023]
Abstract
Soybean is one of the important food, feed, and biofuel crops in the world. Soybean genome modification by genetic transformation has been carried out for trait improvement for more than 4 decades. However, compared to other major crops such as rice, soybean is still recalcitrant to genetic transformation, and transgenic soybean production has been hampered by limitations such as low transformation efficiency and genotype specificity, and prolonged and tedious protocols. The primary goal in soybean transformation over the last decade is to achieve high efficiency and genotype flexibility. Soybean transformation has been improved by modifying tissue culture conditions such as selection of explant types, adjustment of culture medium components and choice of selection reagents, as well as better understanding the transformation mechanisms of specific approaches such as Agrobacterium infection. Transgenesis-based breeding of soybean varieties with new traits is now possible by development of improved protocols. In this review, we summarize the developments in soybean genetic transformation to date, especially focusing on the progress made using Agrobacterium-mediated methods and biolistic methods over the past decade. We also discuss current challenges and future directions.
Collapse
Affiliation(s)
- Hu Xu
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
| | - Yong Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijuan Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lijuan Qiu,
| | - Yidong Ran
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
- Yidong Ran,
| |
Collapse
|
12
|
Sun J, Wang M, Zhao C, Liu T, Liu Z, Fan Y, Xue Y, Li W, Zhang X, Zhao L. GmFULc Is Induced by Short Days in Soybean and May Accelerate Flowering in Transgenic Arabidopsis thaliana. Int J Mol Sci 2021; 22:10333. [PMID: 34638672 PMCID: PMC8508813 DOI: 10.3390/ijms221910333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022] Open
Abstract
Flowering is an important developmental process from vegetative to reproductive growth in plant; thus, it is necessary to analyze the genes involved in the regulation of flowering time. The MADS-box transcription factor family exists widely in plants and plays an important role in the regulation of flowering time. However, the molecular mechanism of GmFULc involved in the regulation of plant flowering is not very clear. In this study, GmFULc protein had a typical MADS domain and it was a member of MADS-box transcription factor family. The expression analysis revealed that GmFULc was induced by short days (SD) and regulated by the circadian clock. Compared to wild type (WT), overexpression of GmFULc in transgenic Arabidopsis caused significantly earlier flowering time, while ful mutants flowered later, and overexpression of GmFULc rescued the late-flowering phenotype of ful mutants. ChIP-seq of GmFULc binding sites identified potential direct targets, including TOPLESS (TPL), and it inhibited the transcriptional activity of TPL. In addition, the transcription levels of FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) and LEAFY (LFY) in the downstream of TPL were increased in GmFULc- overexpressionArabidopsis, suggesting that the early flowering phenotype was associated with up-regulation of these genes. Our results suggested that GmFULc inhibited the transcriptional activity of TPL and induced expression of FT, SOC1 and LFY to promote flowering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaoming Zhang
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China; (J.S.); (M.W.); (C.Z.); (T.L.); (Z.L.); (Y.F.); (Y.X.); (W.L.)
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China; (J.S.); (M.W.); (C.Z.); (T.L.); (Z.L.); (Y.F.); (Y.X.); (W.L.)
| |
Collapse
|
13
|
Liu X, Wu Z, Feng J, Yuan G, He L, Zhang D, Teng N. A Novel R2R3-MYB Gene LoMYB33 From Lily Is Specifically Expressed in Anthers and Plays a Role in Pollen Development. FRONTIERS IN PLANT SCIENCE 2021; 12:730007. [PMID: 34630475 PMCID: PMC8495421 DOI: 10.3389/fpls.2021.730007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Lily (Lilium spp.) is an important commercial flower crop, but its market popularity and applications are adversely affected by severe pollen pollution. Many studies have examined pollen development in model plants, but few studies have been conducted on flower crops such as lily. GAMYBs are a class of R2R3-MYB transcription factors and play important roles in plant development and biotic resistance; their functions vary in different pathways, and many of them are involved in anther development. However, their function and regulatory role in lily remain unclear. Here, the GAMYB homolog LoMYB33 was isolated and identified from lily. The open reading frame of LoMYB33 was 1620 bp and encoded a protein with 539 amino acids localized in the nucleus and cytoplasm. Protein sequence alignment showed that LoMYB33 contained a conserved R2R3 domain and three BOX motifs (BOX1, BOX2, and BOX3), which were unique to the GAMYB family. LoMYB33 had transcriptional activation activity, and its transactivation domain was located within 90 amino acids of the C-terminal. LoMYB33 was highly expressed during the late stages of anther development, especially in pollen. Analysis of the promoter activity of LoMYB33 in transgenic Arabidopsis revealed that the LoMYB33 promoter was highly activated in the pollen of stage 12 to 13 flowers. Overexpression of LoMYB33 in Arabidopsis significantly retarded growth; the excess accumulation of LoMYB33 also negatively affected normal anther development, which generated fewer pollen grains and resulted in partial male sterility in transgenic plants. Silencing of LoMYB33 in lily also greatly decreased the amount of pollen. Overall, our results suggested that LoMYB33 might play an important role in the anther development and pollen formation of lily.
Collapse
Affiliation(s)
- Xinyue Liu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jingxian Feng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Guozhen Yuan
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ling He
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Dehua Zhang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Wang Y, Xu C, Sun J, Dong L, Li M, Liu Y, Wang J, Zhang X, Li D, Sun J, Zhang Y, Shan J, Li W, Zhao L. GmRAV confers ecological adaptation through photoperiod control of flowering time and maturity in soybean. PLANT PHYSIOLOGY 2021; 187:361-377. [PMID: 34618136 PMCID: PMC8418415 DOI: 10.1093/plphys/kiab255] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/12/2021] [Indexed: 05/31/2023]
Abstract
Photoperiod strictly controls vegetative and reproductive growth stages in soybean (Glycine max). A soybean GmRAV (Related to ABI3/VP1) transcription factor containing both AP2 and B3 domains was shown to be a key component of this process. We identified six polymorphisms in the GmRAV promoter that showed significant association with flowering time and maturity of soybean in one or multiple environments. Soybean varieties with minor polymorphism exhibited a longer growth period contributing to soybean adaptation to lower latitudes. The cis-acting element GT1CONSENSUS motif of the GmRAV promoter controlled the growth period, and the major allele in this motif shortened duration of late reproductive stages by reducing GmRAV expression levels. Three GmRAV-overexpressing (GmRAV-ox) transgenic lines displayed later flowering time and maturity, shorter height and fewer numbers of leaves compared with control plants, whereas transgenic inhibition of GmRAV expression resulted in earlier flowering time and maturity and increased plant height. Combining DNA affinity purification sequencing and RNA sequencing analyses revealed 154 putative target genes directly bound and transcriptionally regulated by GmRAV. Two GmRAV binding motifs [C(A/G)AACAA(G/T)A(C/T)A(G/T)] and [C(T/A)A(C)C(T/G)CTG] were identified, and acting downstream of E3E4, GmRAV repressed GmFT5a transcriptional activity through binding a CAACA motif, thereby delaying soybean growth and extending both vegetative and reproductive phases.
Collapse
Affiliation(s)
- Yuhe Wang
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Chongjing Xu
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Jiafan Sun
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Minmin Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Ying Liu
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Jianhui Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiaoming Zhang
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Dongmei Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Jingzhe Sun
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Yuntong Zhang
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Jinming Shan
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Wenbin Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|