1
|
Wang T, Wang GL, Fang Y, Zhang Y, Peng W, Zhou Y, Zhang A, Yu LJ, Lu C. Architecture of the spinach plastid-encoded RNA polymerase. Nat Commun 2024; 15:9838. [PMID: 39537621 PMCID: PMC11561172 DOI: 10.1038/s41467-024-54266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
The plastid-encoded RNA polymerase serves as the principal transcription machinery within chloroplasts, transcribing over 80% of all primary plastid transcripts. This polymerase consists of a prokaryotic-like core enzyme known as the plastid-encoded RNA polymerase core, and is supplemented by newly evolved associated proteins known as PAPs. However, the architecture of the plastid-encoded RNA polymerase and the possible functions of PAPs remain unknown. Here, we present the cryo-electron microscopy structure of a 19-subunit plastid-encoded RNA polymerase complex derived from spinach (Spinacia oleracea). The structure shows that the plastid-encoded RNA polymerase core resembles bacterial RNA polymerase. Twelve PAPs and two additional proteins (FLN2 and pTAC18) bind at the periphery of the plastid-encoded RNA polymerase core, forming extensive interactions that may facilitate complex assembly and stability. PAPs may also protect the complex against oxidative damage and has potential functions in transcriptional regulation. This research offers a structural basis for future investigations into the functions and regulatory mechanisms governing the transcription of plastid genes.
Collapse
Affiliation(s)
- Tongtong Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Guang-Lei Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ying Fang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yi Zhang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Wenxin Peng
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yue Zhou
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Aihong Zhang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Congming Lu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China.
| |
Collapse
|
2
|
He S, Siman Y, Li G, Lv J, Zhao K, Deng M. Chloroplast genome characteristic, comparative and phylogenetic analyses in Capsicum (Solanaceae). BMC Genomics 2024; 25:1052. [PMID: 39511482 PMCID: PMC11542203 DOI: 10.1186/s12864-024-10980-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Capsicum (Solanaceae) is a globally important vegetable crop and is also used therapeutically in traditional medicine systems. However, little is known of the genetic variation within the commonly grown cultivars, the evolutionary relationships and differences in the chloroplast (cp.) genomes between Capsicum species remain unclear. RESULTS The cp. genomes of 32 Capsicum varieties in three species from 6 countries were investigated. The cp. genome of Capsicum was found to be ~ 156 kb in length and to contain 113 unique genes, of which 79 encoded proteins, 30 encoded transfer tRNAs, and 4 were for ribosomal RNAs. The 32 varieties that we chose for study represented 13 genotypes, containing a total of 608 indels, 83 SNPs, 47 SSRs and 281-306 repeat sequences. We then included several previously sequenced Capsicum cp. genomes, and found that the nine investigated species showed a number of differences in the characteristics of the four IR boundaries, and it was the non-coding regions that contained the most variable regions. We conducted a phylogenetic reconstruction using the cp. genomes of 43 representative species of Solanaceae, and the resulting phylogeny generally reflected the currently accepted classification, with the species of the pungent group having close relationship with one another. CONCLUSIONS This study provides a comprehensive analysis of Capsicum chloroplast genomes, revealing significant variations in IR boundaries and other genomic features. These findings enhance our understanding of Capsicum evolution and genetic diversity.
Collapse
Affiliation(s)
- Shuilian He
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Yinqi Siman
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Gengyun Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Junheng Lv
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| | - Kai Zhao
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| | - Minghua Deng
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| |
Collapse
|
3
|
He S, Xu B, Chen S, Li G, Zhang J, Xu J, Wu H, Li X, Yang Z. Sequence characteristics, genetic diversity and phylogenetic analysis of the Cucurbita ficifolia (Cucurbitaceae) chloroplasts genome. BMC Genomics 2024; 25:384. [PMID: 38637729 PMCID: PMC11027378 DOI: 10.1186/s12864-024-10278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Curcubita ficifolia Bouché (Cucurbitaceae) has high value as a food crop and medicinal plant, and also has horticultural value as rootstock for other melon species. China is home to many different cultivars, but the genetic diversity of these resources and the evolutionary relationships among them, as well as the differences between C. ficifolia and other Cucurbita species, remain unclear. RESULTS We investigated the chloroplast (cp) genomes of 160 C. ficifolia individuals from 31 populations in Yunnan, a major C. ficifolia production area in China. We found that the cp genome of C. ficifolia is ~151 kb and contains 128 genes, of which 86 are protein coding genes, 34 encode tRNA, and eight encode rRNAs. We also identified 64 SSRs, mainly AT repeats. The cp genome was found to contain a total of 204 SNP and 57 indels, and a total of 21 haplotypes were found in the 160 study individuals. The reverse repeat (IR) region of C. ficifolia contained a few differences compared with this region in the six other Cucurbita species. Sequence difference analysis demonstrated that most of the variable regions were concentrated in the single copy (SC) region. Moreover, the sequences of the coding regions were found to be more similar among species than those of the non-coding regions. The phylogenies reconstructed from the cp genomes of 61 representative species of Cucurbitaceae reflected the currently accepted classification, in which C. ficifolia is sister to the other Cucurbita species, however, different interspecific relationships were found between Cucurbita species. CONCLUSIONS These results will be valuable in the classification of C. ficifolia genetic resources and will contribute to our understanding of evolutionary relationships within the genus Cucurbita.
Collapse
Affiliation(s)
- Shuilian He
- College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Bin Xu
- College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Siyun Chen
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
| | - Gengyun Li
- College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Jie Zhang
- College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Junqiang Xu
- College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Hang Wu
- College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Xuejiao Li
- College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China.
| | - Zhengan Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China.
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China.
| |
Collapse
|
4
|
do Prado PFV, Ahrens FM, Liebers M, Ditz N, Braun HP, Pfannschmidt T, Hillen HS. Structure of the multi-subunit chloroplast RNA polymerase. Mol Cell 2024; 84:910-925.e5. [PMID: 38428434 DOI: 10.1016/j.molcel.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Chloroplasts contain a dedicated genome that encodes subunits of the photosynthesis machinery. Transcription of photosynthesis genes is predominantly carried out by a plastid-encoded RNA polymerase (PEP), a nearly 1 MDa complex composed of core subunits with homology to eubacterial RNA polymerases (RNAPs) and at least 12 additional chloroplast-specific PEP-associated proteins (PAPs). However, the architecture of this complex and the functions of the PAPs remain unknown. Here, we report the cryo-EM structure of a 19-subunit PEP complex from Sinapis alba (white mustard). The structure reveals that the PEP core resembles prokaryotic and nuclear RNAPs but contains chloroplast-specific features that mediate interactions with the PAPs. The PAPs are unrelated to known transcription factors and arrange around the core in a unique fashion. Their structures suggest potential functions during transcription in the chemical environment of chloroplasts. These results reveal structural insights into chloroplast transcription and provide a framework for understanding photosynthesis gene expression.
Collapse
Affiliation(s)
- Paula F V do Prado
- University Medical Center Göttingen, Department of Cellular Biochemistry, Humboldtallee 23, 37073 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Research Group Structure and Function of Molecular Machines, Am Fassberg 11, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Frederik M Ahrens
- Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Monique Liebers
- Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Noah Ditz
- Institute of Plant Genetics, Plant Molecular Biology and Plant Proteomics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Institute of Plant Genetics, Plant Molecular Biology and Plant Proteomics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Thomas Pfannschmidt
- Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| | - Hauke S Hillen
- University Medical Center Göttingen, Department of Cellular Biochemistry, Humboldtallee 23, 37073 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Research Group Structure and Function of Molecular Machines, Am Fassberg 11, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany; Göttingen Center for Molecular Biosciences (GZMB), Research Group Structure and Function of Molecular Machines, University of Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
5
|
Vergara-Cruces Á, Pramanick I, Pearce D, Vogirala VK, Byrne MJ, Low JKK, Webster MW. Structure of the plant plastid-encoded RNA polymerase. Cell 2024; 187:1145-1159.e21. [PMID: 38428394 DOI: 10.1016/j.cell.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 03/03/2024]
Abstract
Chloroplast genes encoding photosynthesis-associated proteins are predominantly transcribed by the plastid-encoded RNA polymerase (PEP). PEP is a multi-subunit complex composed of plastid-encoded subunits similar to bacterial RNA polymerases (RNAPs) stably bound to a set of nuclear-encoded PEP-associated proteins (PAPs). PAPs are essential to PEP activity and chloroplast biogenesis, but their roles are poorly defined. Here, we present cryoelectron microscopy (cryo-EM) structures of native 21-subunit PEP and a PEP transcription elongation complex from white mustard (Sinapis alba). We identify that PAPs encase the core polymerase, forming extensive interactions that likely promote complex assembly and stability. During elongation, PAPs interact with DNA downstream of the transcription bubble and with the nascent mRNA. The models reveal details of the superoxide dismutase, lysine methyltransferase, thioredoxin, and amino acid ligase enzymes that are subunits of PEP. Collectively, these data provide a foundation for the mechanistic understanding of chloroplast transcription and its role in plant growth and adaptation.
Collapse
Affiliation(s)
- Ángel Vergara-Cruces
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ishika Pramanick
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - David Pearce
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Vinod K Vogirala
- Electron Bio-Imaging Centre (eBIC), Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Matthew J Byrne
- Electron Bio-Imaging Centre (eBIC), Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Michael W Webster
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
6
|
Wu XX, Mu WH, Li F, Sun SY, Cui CJ, Kim C, Zhou F, Zhang Y. Cryo-EM structures of the plant plastid-encoded RNA polymerase. Cell 2024; 187:1127-1144.e21. [PMID: 38428393 DOI: 10.1016/j.cell.2024.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Chloroplasts are green plastids in the cytoplasm of eukaryotic algae and plants responsible for photosynthesis. The plastid-encoded RNA polymerase (PEP) plays an essential role during chloroplast biogenesis from proplastids and functions as the predominant RNA polymerase in mature chloroplasts. The PEP-centered transcription apparatus comprises a bacterial-origin PEP core and more than a dozen eukaryotic-origin PEP-associated proteins (PAPs) encoded in the nucleus. Here, we determined the cryo-EM structures of Nicotiana tabacum (tobacco) PEP-PAP apoenzyme and PEP-PAP transcription elongation complexes at near-atomic resolutions. Our data show the PEP core adopts a typical fold as bacterial RNAP. Fifteen PAPs bind at the periphery of the PEP core, facilitate assembling the PEP-PAP supercomplex, protect the complex from oxidation damage, and likely couple gene transcription with RNA processing. Our results report the high-resolution architecture of the chloroplast transcription apparatus and provide the structural basis for the mechanistic and functional study of transcription regulation in chloroplasts.
Collapse
Affiliation(s)
- Xiao-Xian Wu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wen-Hui Mu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Fan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shu-Yi Sun
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao-Jun Cui
- University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
7
|
Zhang Y, Tian L, Lu C. Chloroplast gene expression: Recent advances and perspectives. PLANT COMMUNICATIONS 2023; 4:100611. [PMID: 37147800 PMCID: PMC10504595 DOI: 10.1016/j.xplc.2023.100611] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago. During subsequent coevolution with the nuclear genome, the chloroplast genome has remained independent, albeit strongly reduced, with its own transcriptional machinery and distinct features, such as chloroplast-specific innovations in gene expression and complicated post-transcriptional processing. Light activates the expression of chloroplast genes via mechanisms that optimize photosynthesis, minimize photodamage, and prioritize energy investments. Over the past few years, studies have moved from describing phases of chloroplast gene expression to exploring the underlying mechanisms. In this review, we focus on recent advances and emerging principles that govern chloroplast gene expression in land plants. We discuss engineering of pentatricopeptide repeat proteins and its biotechnological effects on chloroplast RNA research; new techniques for characterizing the molecular mechanisms of chloroplast gene expression; and important aspects of chloroplast gene expression for improving crop yield and stress tolerance. We also discuss biological and mechanistic questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Yi Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lin Tian
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Congming Lu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
8
|
Bychkov IA, Andreeva AA, Kudryakova NV, Pojidaeva ES, Kusnetsov VV. The role of PAP4/FSD3 and PAP9/FSD2 in heat stress responses of chloroplast genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111359. [PMID: 35738478 DOI: 10.1016/j.plantsci.2022.111359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Chloroplasts' mechanisms of adaptation to elevated temperatures are largely determined by the gene expression of the plastid transcription apparatus. Gene disruption of iron-containing superoxide dismutase PAP4/FSD3 and PAP9/FSD2, which are parts of the DNA-RNA polymerase complex of plastids, contributed to a decrease in resistance to oxidative stress caused by the prolonged action of elevated temperatures (5 days, 30 °C). Under heat stress conditions, pap4/fsd3 and pap9/fsd2 mutants showed a decline in chlorophyll content and photosynthesis level, as measured by photosynthetic parameters, and a different amplitude of HSP gene response to heat stress. The expression of nuclear- and plastid-encoded photosynthesis genes and corresponding proteins was strongly inhibited in the mutants as compared with wild-type plants and was further suppressed or displayed no additional changes at 30 °C. NEP-dependent plastid genes, as well as NEP genes RPOTp and RPOTmp, were also downregulated in the mutants by high temperature or remained stable, unlike in wild-type seedlings where these genes were strongly upregulated. The results obtained correspond to the concept of the complex effect of various forms of reactive oxygen species under all types of stresses, including heat stress, and confirm the hypothesis of a new regulatory function in plastid transcription acquired by enzymatic proteins during evolution.
Collapse
Affiliation(s)
- Ivan A Bychkov
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia
| | - Aleksandra A Andreeva
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia
| | - Natalia V Kudryakova
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia.
| | - Elena S Pojidaeva
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia
| | - Victor V Kusnetsov
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia
| |
Collapse
|
9
|
Three-Dimensional Envelope and Subunit Interactions of the Plastid-Encoded RNA Polymerase from Sinapis alba. Int J Mol Sci 2022; 23:ijms23179922. [PMID: 36077319 PMCID: PMC9456514 DOI: 10.3390/ijms23179922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
RNA polymerases (RNAPs) are found in all living organisms. In the chloroplasts, the plastid-encoded RNA polymerase (PEP) is a prokaryotic-type multimeric RNAP involved in the selective transcription of the plastid genome. One of its active states requires the assembly of nuclear-encoded PEP-Associated Proteins (PAPs) on the catalytic core, producing a complex of more than 900 kDa, regarded as essential for chloroplast biogenesis. In this study, sequence alignments of the catalytic core subunits across various chloroplasts of the green lineage and prokaryotes combined with structural data show that variations are observed at the surface of the core, whereas internal amino acids associated with the catalytic activity are conserved. A purification procedure compatible with a structural analysis was used to enrich the native PEP from Sinapis alba chloroplasts. A mass spectrometry (MS)-based proteomic analysis revealed the core components, the PAPs and additional proteins, such as FLN2 and pTAC18. MS coupled with crosslinking (XL-MS) provided the initial structural information in the form of protein clusters, highlighting the relative position of some subunits with the surfaces of their interactions. Using negative stain electron microscopy, the PEP three-dimensional envelope was calculated. Particles classification shows that the protrusions are very well-conserved, offering a framework for the future positioning of all the PAPs. Overall, the results show that PEP-associated proteins are firmly and specifically associated with the catalytic core, giving to the plastid transcriptional complex a singular structure compared to other RNAPs.
Collapse
|
10
|
Chen C, Miao Y, Luo D, Li J, Wang Z, Luo M, Zhao T, Liu D. Sequence Characteristics and Phylogenetic Analysis of the Artemisia argyi Chloroplast Genome. FRONTIERS IN PLANT SCIENCE 2022; 13:906725. [PMID: 35795352 PMCID: PMC9252292 DOI: 10.3389/fpls.2022.906725] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/06/2022] [Indexed: 06/03/2023]
Abstract
Artemisia argyi Levl. et Van is an important Asteraceae species with a high medicinal value. There are abundant A. argyi germplasm resources in Asia, especially in China, but the evolutionary relationships of these varieties and the systematic localization of A. argyi in the family Asteraceae are still unclear. In this study, the chloroplast (cp) genomes of 72 A. argyi varieties were systematically analyzed. The 72 varieties originated from 47 regions in China at different longitudes, latitudes and altitudes, and included both wild and cultivated varieties. The A. argyi cp genome was found to be ∼151 kb in size and to contain 114 genes, including 82 protein-coding, 28 tRNA, and 4 rRNA genes. The number of short sequence repeats (SSRs) in A. argyi cp genomes ranged from 35 to 42, and most of them were mononucleotide A/T repeats. A total of 196 polymorphic sites were detected in the cp genomes of the 72 varieties. Phylogenetic analysis demonstrated that the genetic relationship between A. argyi varieties had a weak relationship with their geographical distribution. Furthermore, inverted repeat (IR) boundaries of 10 Artemisia species were found to be significantly different. A sequence divergence analysis of Asteraceae cp genomes showed that the variable regions were mostly located in single-copy (SC) regions and that the coding regions were more conserved than the non-coding regions. A phylogenetic tree was constructed using 43 protein-coding genes common to 67 Asteraceae species. The resulting tree was consistent with the traditional classification system; Artemisia species were clustered into one group, and A. argyi was shown to be closely related to Artemisia lactiflora and Artemisia montana. In summary, this study systematically analyzed the cp genome characteristics of A. argyi and compared cp genomes of Asteraceae species. The results provide valuable information for the definitive identification of A. argyi varieties and for the understanding of the evolutionary relationships between Asteraceae species.
Collapse
|
11
|
PAP8/pTAC6 Is Part of a Nuclear Protein Complex and Displays RNA Recognition Motifs of Viral Origin. Int J Mol Sci 2022; 23:ijms23063059. [PMID: 35328480 PMCID: PMC8954402 DOI: 10.3390/ijms23063059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Chloroplast biogenesis depends on a complex transcriptional program involving coordinated expression of plastid and nuclear genes. In particular, photosynthesis-associated plastid genes are expressed by the plastid-encoded polymerase (PEP) that undergoes a structural rearrangement during chloroplast formation. The prokaryotic-type core enzyme is rebuilt into a larger complex by the addition of nuclear-encoded PEP-associated proteins (PAP1 to PAP12). Among the PAPs, some have been detected in the nucleus (PAP5 and PAP8), where they could serve a nuclear function required for efficient chloroplast biogenesis. Here, we detected PAP8 in a large nuclear subcomplex that may include other subunits of the plastid-encoded RNA polymerase. We have made use of PAP8 recombinant proteins in Arabidopsis thaliana to decouple its nucleus- and chloroplast-associated functions and found hypomorphic mutants pointing at essential amino acids. While the origin of the PAP8 gene remained elusive, we have found in its sequence a micro-homologous domain located within a large structural homology with a rhinoviral RNA-dependent RNA polymerase, highlighting potential RNA recognition motifs in PAP8. PAP8 in vitro RNA binding activity suggests that this domain is functional. Hence, we propose that the acquisition of PAPs may have occurred during evolution by different routes, including lateral gene transfer.
Collapse
|
12
|
Rudić J, Dragićević MB, Momčilović I, Simonović AD, Pantelić D. In Silico Study of Superoxide Dismutase Gene Family in Potato and Effects of Elevated Temperature and Salicylic Acid on Gene Expression. Antioxidants (Basel) 2022; 11:488. [PMID: 35326138 PMCID: PMC8944489 DOI: 10.3390/antiox11030488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
Potato (Solanum tuberosum L.) is the most important vegetable crop globally and is very susceptible to high ambient temperatures. Since heat stress causes the accumulation of reactive oxygen species (ROS), investigations regarding major enzymatic components of the antioxidative system are of the essence. Superoxide dismutases (SODs) represent the first line of defense against ROS but detailed in silico analysis and characterization of the potato SOD gene family have not been performed thus far. We have analyzed eight functional SOD genes, three StCuZnSODs, one StMnSOD, and four StFeSODs, annotated in the updated version of potato genome (Spud DB DM v6.1). The StSOD genes and their respective proteins were analyzed in silico to determine the exon-intron organization, splice variants, cis-regulatory promoter elements, conserved domains, signals for subcellular targeting, 3D-structures, and phylogenetic relations. Quantitative PCR analysis revealed higher induction of StCuZnSODs (the major potato SODs) and StFeSOD3 in thermotolerant cultivar Désirée than in thermosensitive Agria and Kennebec during long-term exposure to elevated temperature. StMnSOD was constitutively expressed, while expression of StFeSODs was cultivar-dependent. The effects of salicylic acid (10-5 M) on StSODs expression were minor. Our results provide the basis for further research on StSODs and their regulation in potato, particularly in response to elevated temperatures.
Collapse
Affiliation(s)
| | | | | | | | - Danijel Pantelić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (J.R.); (M.B.D.); (I.M.); (A.D.S.)
| |
Collapse
|