1
|
Zhao R, Han HZ, Li SH, Zhang LH, Wang F, Zhang N. Functional identification of AaMYB113 and AaMYB114 from Aeonium arboreum 'Halloween' in model plants. Gene 2024; 927:148699. [PMID: 38880185 DOI: 10.1016/j.gene.2024.148699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Aeonium arboreum 'Halloween', a popular indoor ornamental succulent in China, changes its leaf colour to red on light exposure. However, the underlying molecular mechanisms is still vague. Comparative analysis of transcriptome data from 'Halloween' leaves treated under dark and light conditions revealed two R2R3-MYB transcription factors, AaMYB113 and AaMYB114, that may mediate anthocyanin accumulation. In this study, we cloned the AaMYB113 and AaMYB114 genes, encoding proteins of 279 and 248 amino acids, respectively. Transcriptional activity analysis revealed that AaMYB113 exhibits strong transcriptional activity, in contrast to AaMYB114, which demonstrates minimal activity. Transient expression studies in tobacco leaves demonstrated that AaMYB113 induced red pigmentation, whereas AaMYB114 did not. Subsequent stable overexpression in Arabidopsis thaliana confirmed that AaMYB113, but not AaMYB114, could similarly turn Arabidopsis leaves red. Further stable transformation of AaMYB113 in tobacco affected multiple floral components, including leaves, petals, calyx, flower tubes, and filaments, turning them red. Quantitative real-time PCR (qRT-PCR) assay in leaves of AaMYB113 stably transformed tobacco and Arabidopsis revealed upregulation of anthocyanin biosynthesis-related structural genes and TT8-like transcription factors. Moreover, the dual luciferase analysis confirmed that AaMYB113 can activate the promoters of 'Halloween' anthocyanin synthesis structural genes, AaCHS, AaCHI, AaF3H, AaDFR and AaANS. The above results indicate that AaMYB113 can promote anthocyanin synthesis, while AaMYB114 does not have this function. This study contributes significantly to the limited body of research on the molecular mechanisms of anthocyanin synthesis in succulents, advancing our understanding of how these pathways are regulated in 'Halloween' succulents and potentially other species.
Collapse
Affiliation(s)
- Rong Zhao
- College of Materials and Biology, Suqian University, Suqian, Jiangsu 223800, China
| | - Hao-Zhang Han
- College of Materials and Biology, Suqian University, Suqian, Jiangsu 223800, China.
| | - Su-Hua Li
- College of Materials and Biology, Suqian University, Suqian, Jiangsu 223800, China
| | - Li-Hua Zhang
- College of Materials and Biology, Suqian University, Suqian, Jiangsu 223800, China
| | - Fang Wang
- College of Materials and Biology, Suqian University, Suqian, Jiangsu 223800, China
| | - Nan Zhang
- College of Materials and Biology, Suqian University, Suqian, Jiangsu 223800, China
| |
Collapse
|
2
|
Xu Z, Xiao Y, Guo J, Lv Z, Chen W. Relevance and regulation of alternative splicing in plant secondary metabolism: current understanding and future directions. HORTICULTURE RESEARCH 2024; 11:uhae173. [PMID: 39135731 PMCID: PMC11317897 DOI: 10.1093/hr/uhae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024]
Abstract
The secondary metabolism of plants is an essential life process enabling organisms to navigate various stages of plant development and cope with ever-changing environmental stresses. Secondary metabolites, abundantly found in nature, possess significant medicinal value. Among the regulatory mechanisms governing these metabolic processes, alternative splicing stands out as a widely observed post-transcriptional mechanism present in multicellular organisms. It facilitates the generation of multiple mRNA transcripts from a single gene by selecting different splicing sites. Selective splicing events in plants are widely induced by various signals, including external environmental stress and hormone signals. These events ultimately regulate the secondary metabolic processes and the accumulation of essential secondary metabolites in plants by influencing the synthesis of primary metabolites, hormone metabolism, biomass accumulation, and capillary density. Simultaneously, alternative splicing plays a crucial role in enhancing protein diversity and the abundance of the transcriptome. This paper provides a summary of the factors inducing alternative splicing events in plants and systematically describes the progress in regulating alternative splicing with respect to different secondary metabolites, including terpenoid, phenolic compounds, and nitrogen-containing compounds. Such elucidation offers critical foundational insights for understanding the role of alternative splicing in regulating plant metabolism and presents novel avenues and perspectives for bioengineering.
Collapse
Affiliation(s)
- Zihan Xu
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinlin Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611103, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611103, China
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
3
|
Hou Y, Li Q, Zhou H, Kafle S, Li W, Tan L, Liang J, Meng L, Xin H. SMRT sequencing of a full-length transcriptome reveals cold induced alternative splicing in Vitis amurensis root. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108863. [PMID: 38917739 DOI: 10.1016/j.plaphy.2024.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Alternative splicing enhances diversity at the transcriptional and protein levels that widely involved in plant response to biotic and abiotic stresses. V. amurensis is an extremely cold-tolerant wild grape variety, however, studies on alternative splicing (AS) in amur grape at low temperatures are currently poorly understood. In this study, we analyzed full-length transcriptome and RNA seq data at 0, 2, and 24 h after cold stress in V. amurensis roots. Following quality control and correction, 221,170 high-quality full-length non-concatemer (FLNC) reads were identified. A total of 16,181 loci and 30,733 isoforms were identified. These included 22,868 novel isoforms from annotated genes and 2815 isoforms from 2389 novel genes. Among the distinguished novel isoforms, 673 Long non-coding RNAs (LncRNAs) and 18,164 novel isoforms open reading frame (ORF) region were found. A total of 2958 genes produced 8797 AS events, of which 189 genes were involved in the low-temperature response. Twelve transcription factors show AS during cold treatment and VaMYB108 was selected for initial exploration. Two transcripts, Chr05.63.1 (VaMYB108short) and Chr05.63.2 (VaMYB108normal) of VaMYB108, display up-regulated expression after cold treatment in amur grape roots and are both localized in the nucleus. Only VaMYB108normal exhibits transcriptional activation activity. Overexpression of either VaMYB108short or VaMYB108normal in grape roots leads to increased expression of the other transcript and both increased chilling resistance of amur grape roots. The results improve and supplement the genome annotations and provide insights for further investigation into AS mechanisms during cold stress in V. amurensis.
Collapse
Affiliation(s)
- Yujun Hou
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingyun Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Subash Kafle
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjuan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lisha Tan
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Ju Liang
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang, 830091, China
| | - Lin Meng
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Haiping Xin
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
4
|
Menconi J, Perata P, Gonzali S. In pursuit of purple: anthocyanin biosynthesis in fruits of the tomato clade. TRENDS IN PLANT SCIENCE 2024; 29:589-604. [PMID: 38177013 DOI: 10.1016/j.tplants.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Over the past decade, progress has been made in the characterization of anthocyanin synthesis in fruits of plants belonging to the tomato clade. The genomic elements underlying the activation of the process were identified, providing the basis for understanding how the pathway works in these species. In this review we explore the genetic mechanisms that have been characterized to date, and detail the various wild relatives of the tomato, which have been crucial for recovering ancestral traits that were probably lost during evolution from green-purple to yellow and red tomatoes. This knowledge should help developing strategies to further enhance the status of the commercial tomato lines on sale, based on both genome editing and breeding techniques.
Collapse
Affiliation(s)
- Jacopo Menconi
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy
| | - Pierdomenico Perata
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy.
| | - Silvia Gonzali
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy.
| |
Collapse
|
5
|
Ren H, Yang W, Jing W, Shahid MO, Liu Y, Qiu X, Choisy P, Xu T, Ma N, Gao J, Zhou X. Multi-omics analysis reveals key regulatory defense pathways and genes involved in salt tolerance of rose plants. HORTICULTURE RESEARCH 2024; 11:uhae068. [PMID: 38725456 PMCID: PMC11079482 DOI: 10.1093/hr/uhae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/21/2024] [Indexed: 05/12/2024]
Abstract
Salinity stress causes serious damage to crops worldwide, limiting plant production. However, the metabolic and molecular mechanisms underlying the response to salt stress in rose (Rosa spp.) remain poorly studied. We therefore performed a multi-omics investigation of Rosa hybrida cv. Jardin de Granville (JDG) and Rosa damascena Mill. (DMS) under salt stress to determine the mechanisms underlying rose adaptability to salinity stress. Salt treatment of both JDG and DMS led to the buildup of reactive oxygen species (H2O2). Palisade tissue was more severely damaged in DMS than in JDG, while the relative electrolyte permeability was lower and the soluble protein content was higher in JDG than in DMS. Metabolome profiling revealed significant alterations in phenolic acid, lipids, and flavonoid metabolite levels in JDG and DMS under salt stress. Proteome analysis identified enrichment of flavone and flavonol pathways in JDG under salt stress. RNA sequencing showed that salt stress influenced primary metabolism in DMS, whereas it substantially affected secondary metabolism in JDG. Integrating these datasets revealed that the phenylpropane pathway, especially the flavonoid pathway, is strongly enhanced in rose under salt stress. Consistent with this, weighted gene coexpression network analysis (WGCNA) identified the key regulatory gene chalcone synthase 1 (CHS1), which is important in the phenylpropane pathway. Moreover, luciferase assays indicated that the bHLH74 transcription factor binds to the CHS1 promoter to block its transcription. These results clarify the role of the phenylpropane pathway, especially flavonoid and flavonol metabolism, in the response to salt stress in rose.
Collapse
Affiliation(s)
- Haoran Ren
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Wenjing Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Weikun Jing
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Muhammad Owais Shahid
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Yuming Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Xianhan Qiu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Patrick Choisy
- LVMH Recherche, 185 avenue de Verdun F-45800 St., Jean de Braye, France
| | - Tao Xu
- LVMH Recherche, 185 avenue de Verdun F-45800 St., Jean de Braye, France
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Zeng X, Wu C, Zhang L, Lan L, Fu W, Wang S. Molecular Mechanism of Resistance to Alternaria alternata Apple Pathotype in Apple by Alternative Splicing of Transcription Factor MdMYB6-like. Int J Mol Sci 2024; 25:4353. [PMID: 38673937 PMCID: PMC11050356 DOI: 10.3390/ijms25084353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
As a fruit tree with great economic value, apple is widely cultivated in China. However, apple leaf spot disease causes significant damage to apple quality and economic value. In our study, we found that MdMYB6-like is a transcription factor without auto-activation activity and with three alternative spliced variants. Among them, MdMYB6-like-β responded positively to the pathogen infection. Overexpression of MdMYB6-like-β increased the lignin content of leaves and improved the pathogenic resistance of apple flesh callus. In addition, all three alternative spliced variants of MdMYB6-like could bind to the promoter of MdBGLU H. Therefore, we believe that MdMYB6-like plays an important role in the infection process of the pathogen and lays a solid foundation for breeding disease-resistant cultivars of apple in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Sanhong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.Z.); (C.W.); (L.Z.); (L.L.); (W.F.)
| |
Collapse
|
7
|
Tian Y, Liu X, Chen X, Wang B, Dong M, Chen L, Yang Z, Li Y, Sun H. Integrated Untargeted Metabolome, Full-Length Sequencing and Transcriptome Analyses Reveal the Mechanism of Flavonoid Biosynthesis in Blueberry ( Vaccinium spp.) Fruit. Int J Mol Sci 2024; 25:4137. [PMID: 38673724 PMCID: PMC11050320 DOI: 10.3390/ijms25084137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
As a highly economic berry fruit crop, blueberry is enjoyed by most people and has various potential health benefits, many of which are attributed to the relatively high concentrations of flavonoids. To obtain more accurate and comprehensive transcripts, the full-length transcriptome of half-highbush blueberry (Vaccinium corymbosum/angustifolium cultivar Northland) obtained using single molecule real-time and next-generation sequencing technologies was reported for the first time. Overall, 147,569 consensus transcripts (average length, 2738 bp; N50, 3176 bp) were obtained. After quality control steps, 63,425 high-quality isoforms were obtained and 5030 novel genes, 3002 long non-coding RNAs, 3946 transcription factor genes (TFs), 30,540 alternative splicing events, and 2285 fusion gene pairs were identified. To better explore the molecular mechanism of flavonoid biosynthesis in mature blueberry fruit, an integrative analysis of the metabolome and transcriptome was performed on the exocarp, sarcocarp, and seed. A relatively complete biosynthesis pathway map of phenylpropanoids, flavonoids, and proanthocyanins in blueberry was constructed. The results of the joint analysis showed that the 228 functional genes and 42 TFs regulated 78 differentially expressed metabolites within the biosynthesis pathway of phenylpropanoids/flavonoids. O2PLS analysis results showed that the key metabolites differentially accumulated in blueberry fruit tissues were albireodelphin, delphinidin 3,5-diglucoside, delphinidin 3-O-rutinoside, and delphinidin 3-O-sophoroside, and 10 structural genes (4 Vc4CLs, 3 VcBZ1s, 1 VcUGT75C1, 1 VcAT, and 1 VcUGAT), 4 transporter genes (1 VcGSTF and 3 VcMATEs), and 10 TFs (1 VcMYB, 2 VcbHLHs, 4 VcWD40s, and 3 VcNACs) exhibited strong correlations with 4 delphinidin glycosides. These findings provide insights into the molecular mechanisms of flavonoid biosynthesis and accumulation in blueberry fruit.
Collapse
Affiliation(s)
- Youwen Tian
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.T.); (X.L.); (X.C.); (B.W.); (L.C.)
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China;
| | - Xinlei Liu
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.T.); (X.L.); (X.C.); (B.W.); (L.C.)
| | - Xuyang Chen
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.T.); (X.L.); (X.C.); (B.W.); (L.C.)
| | - Bowei Wang
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.T.); (X.L.); (X.C.); (B.W.); (L.C.)
| | - Mei Dong
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China;
| | - Li Chen
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.T.); (X.L.); (X.C.); (B.W.); (L.C.)
| | - Zhengsong Yang
- High Mountain Economic Plant Research Institute, Yunnan Academy of Agricultural Sciences, Lijiang 674110, China;
| | - Yadong Li
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.T.); (X.L.); (X.C.); (B.W.); (L.C.)
| | - Haiyue Sun
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.T.); (X.L.); (X.C.); (B.W.); (L.C.)
| |
Collapse
|
8
|
Jiang L, Gao Y, Han L, Zhang W, Fan P. Designing plant flavonoids: harnessing transcriptional regulation and enzyme variation to enhance yield and diversity. FRONTIERS IN PLANT SCIENCE 2023; 14:1220062. [PMID: 37575923 PMCID: PMC10420081 DOI: 10.3389/fpls.2023.1220062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
Plant synthetic biology has emerged as a powerful and promising approach to enhance the production of value-added metabolites in plants. Flavonoids, a class of plant secondary metabolites, offer numerous health benefits and have attracted attention for their potential use in plant-based products. However, achieving high yields of specific flavonoids remains challenging due to the complex and diverse metabolic pathways involved in their biosynthesis. In recent years, synthetic biology approaches leveraging transcription factors and enzyme diversity have demonstrated promise in enhancing flavonoid yields and expanding their production repertoire. This review delves into the latest research progress in flavonoid metabolic engineering, encompassing the identification and manipulation of transcription factors and enzymes involved in flavonoid biosynthesis, as well as the deployment of synthetic biology tools for designing metabolic pathways. This review underscores the importance of employing carefully-selected transcription factors to boost plant flavonoid production and harnessing enzyme promiscuity to broaden flavonoid diversity or streamline the biosynthetic steps required for effective metabolic engineering. By harnessing the power of synthetic biology and a deeper understanding of flavonoid biosynthesis, future researchers can potentially transform the landscape of plant-based product development across the food and beverage, pharmaceutical, and cosmetic industries, ultimately benefiting consumers worldwide.
Collapse
Affiliation(s)
- Lina Jiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yifei Gao
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Leiqin Han
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenxuan Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Pengxiang Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
9
|
Yang F, Wang T, Guo Q, Zou Q, Yu S. The CmMYB3 transcription factors isolated from the Chrysanthemum morifolium regulate flavonol biosynthesis in Arabidopsis thaliana. PLANT CELL REPORTS 2023; 42:791-803. [PMID: 36840758 DOI: 10.1007/s00299-023-02991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Chrysanthemum morifolium MYB3 factors are transcriptional activators for the regulation of flavonol biosynthesis. Flavonol was not only the critical secondary metabolite participating in the growth and development of plants but also the main active ingredient in medicinal chrysanthemum. However, few pieces of research revealed the transcriptional regulation of flavonol biosynthesis in Chrysanthemum morifolium. Here, we isolated two CmMYB3 transcription factors (CmMYB3a and CmMYB3b) from the capitulum of Chrysanthemum morifolium cv 'Hangju'. According to the sequence characteristics, the CmMYB3a and CmMYB3b belonged to the R2R3-MYB subgroup 7, whose members were often reported to regulate flavonol biosynthesis positively. CmMYB3a and CmMYB3b factors were identified to localize in the nucleus by subcellular localization assay. Besides, both of them have obvious transcriptional self-activation activity in their C-terminal. After the overexpression of CmMYB3 genes in Nicotiana benthamiana and Arabidopsis thaliana, the flavonol contents in plants were increased, and the expression of AtCHS, AtCHI, AtF3H, and AtFLS genes in A. thaliana was also improved. Interestingly, the CmMYB3a factor had stronger functions in improving flavonol contents and related gene expression levels than CmMYB3b. The interaction analysis between transcription factors and promoters suggested that CmMYB3 could bind and activate the promoters of CmCHI and CmFLS genes in C. morifolium, and CmMYB3a also functioned more powerfully. Overall, these results indicated that CmMYB3a and CmMYB3b work as transcriptional activators in controlling flavonol biosynthesis.
Collapse
Affiliation(s)
- Feng Yang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tao Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Qingjun Zou
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shuyan Yu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
10
|
Li N, Liu Y, Yin Y, Gao S, Wu F, Yu C, Wang F, Kang B, Xu K, Jiao C, Yao M. Identification of CaPs locus involving in purple stripe formation on unripe fruit, reveals allelic variation and alternative splicing of R2R3-MYB transcription factor in pepper ( Capsicum annuum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1140851. [PMID: 37056500 PMCID: PMC10089288 DOI: 10.3389/fpls.2023.1140851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The purple color of unripe pepper fruit is attributed to the accumulation of anthocyanins. Only a few genes controlling the biosynthesis and regulation of anthocyanins have been cloned in Capsicum. In this study, we performed a bulked segregant analysis of the purple striped trait using an F2 population derived from a cross between the immature purple striped fruit line Chen12-4-1-1-1-1 and the normal green fruit line Zhongxian101-M-F9. We mapped the CaPs locus to an 841.39 kb region between markers M-CA690-Xba and MCA710-03 on chromosome 10. CA10g11690 encodes an R2R3-MYB transcription factor that is involved in the biosynthesis of anthocyanins as the best candidate gene. Overexpression and silencing in transformed tobacco (Nicotiana tabacum) lines indicated that CA10g11690 is involved in the formation of purple stripes in the exocarp. A comparison of parental sequences identified an insertion fragment of 1,926 bp in the second intron region of Chen12-4, and eight SNPs were detected between the two parents. Additionally, there were 49 single nucleotide polymorphic variations, two sequence deletions, and four sequence insertions in the promoter region. We found that CA10g11690 undergoes alternative splicing and generates different transcripts. Thus, the functional transcript of CA10g11690 appeared to be primarily involved in the development of purple phenotype in the exocarp. Our data provide new insight into the mechanism of anthocyanin biosynthesis and a theoretical basis for the future breeding of purple striped pepper varieties.
Collapse
Affiliation(s)
- Ning Li
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yabo Liu
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Yanxu Yin
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shenghua Gao
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fangyuan Wu
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chuying Yu
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fei Wang
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Byoung−Cheorl Kang
- Department of Agriculture, Forestry, and Bioresources, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kai Xu
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chunhai Jiao
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Minghua Yao
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
11
|
Tan H, Luo X, Lu J, Wu L, Li Y, Jin Y, Peng X, Xu X, Li J, Zhang W. The long noncoding RNA LINC15957 regulates anthocyanin accumulation in radish. FRONTIERS IN PLANT SCIENCE 2023; 14:1139143. [PMID: 36923129 PMCID: PMC10009236 DOI: 10.3389/fpls.2023.1139143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Radish (Raphanus sativus L.) is an important root vegetable crop belonging to the Brassicaceae family. Anthocyanin rich radish varieties are popular among consumers because of their bright color and high nutritional value. However, the underlying molecular mechanism responsible for skin and flesh induce anthocyanin biosynthesis in transient overexpression, gene silencing and transcriptome sequencing were used to verify its function in radish anthocyanin accumulation, radish remains unclear. Here, we identified a long noncoding RNA LINC15957, overexpression of LINC15957 was significantly increased anthocyanin accumulation in radish leaves, and the expression levels of structural genes related to anthocyanin biosynthesis were also significantly increased. Anthocyanin accumulation and expression levels of anthocyanin biosynthesis genes were significantly reduced in silenced LINC15957 flesh when compared with control. By the transcriptome sequencing of the overexpressed LINC15957 plants and the control, 5,772 differentially expressed genes were identified. A total of 3,849 differentially expressed transcription factors were identified, of which MYB, bHLH, WD40, bZIP, ERF, WRKY and MATE were detected and differentially expressed in the overexpressed LINC15957 plants. KEGG enrichment analysis revealed the genes were significant enriched in tyrosine, L-Phenylalanine, tryptophan, phenylpropanol, and flavonoid biosynthesis. RT-qPCR analysis showed that 8 differentially expressed genes (DEGs) were differentially expressed in LINC15957-overexpressed plants. These results suggested that LINC15957 involved in regulate anthocyanin accumulation and provide abundant data to investigate the genes regulate anthocyanin biosynthesis in radish.
Collapse
Affiliation(s)
- Huping Tan
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
| | - Xiaobo Luo
- Guizhou Institute of Biotechnology, Guizhou Province Academy of Agricultural Sciences, Guiyang, China
| | - Jinbiao Lu
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
| | - Linjun Wu
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
| | - Yadong Li
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
| | - Yueyue Jin
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
| | - Xiao Peng
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
| | - Xiuhong Xu
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
| | - Jingwei Li
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
| | - Wanping Zhang
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
| |
Collapse
|
12
|
Genome-Wide Identification and Analysis of bHLH Transcription Factors Related to Anthocyanin Biosynthesis in Cymbidium ensifolium. Int J Mol Sci 2023; 24:ijms24043825. [PMID: 36835234 PMCID: PMC9963586 DOI: 10.3390/ijms24043825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factors are widely distributed across eukaryotic kingdoms and participate in various physiological processes. To date, the bHLH family has been identified and functionally analyzed in many plants. However, systematic identification of bHLH transcription factors has yet to be reported in orchids. Here, 94 bHLH transcription factors were identified from the Cymbidium ensifolium genome and divided into 18 subfamilies. Most CebHLHs contain numerous cis-acting elements associated with abiotic stress responses and phytohormone responses. A total of 19 pairs of duplicated genes were found in the CebHLHs, of which 13 pairs were segmentally duplicated genes and six pairs were tandemly duplicated genes. Expression pattern analysis based on transcriptome data revealed that 84 CebHLHs were differentially expressed in four different color sepals, especially CebHLH13 and CebHLH75 of the S7 subfamily. The expression profiles of CebHLH13 and CebHLH75 in sepals, which are considered potential genes regulating anthocyanin biosynthesis, were confirmed through the qRT-PCR technique. Furthermore, subcellular localization results showed that CebHLH13 and CebHLH75 were located in the nucleus. This research lays a foundation for further exploration of the mechanism of CebHLHs in flower color formation.
Collapse
|
13
|
Hussain SS, Abbas M, Abbas S, Wei M, El-Sappah AH, Sun Y, Li Y, Ragauskas AJ, Li Q. Alternative splicing: transcriptional regulatory network in agroforestry. FRONTIERS IN PLANT SCIENCE 2023; 14:1158965. [PMID: 37123829 PMCID: PMC10132464 DOI: 10.3389/fpls.2023.1158965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Alternative splicing (AS) in plants plays a key role in regulating the expression of numerous transcripts from a single gene in a regulatory pathway. Variable concentrations of growth regulatory hormones and external stimuli trigger alternative splicing to switch among different growth stages and adapt to environmental stresses. In the AS phenomenon, a spliceosome causes differential transcriptional modifications in messenger RNA (mRNAs), resulting in partial or complete retention of one or more introns as compared to fully spliced mRNA. Differentially expressed proteins translated from intron-retaining messenger RNA (mRNAir) perform vital functions in the feedback mechanism. At the post-transcriptional level, AS causes the remodeling of transcription factors (TFs) by the addition or deletion of binding domains to activate and/or repress transcription. In this study, we have summarized the specific role of AS in the regulation of gene expression through repression and activation of the transcriptional regulatory network under external stimuli and switch among developmental stages.
Collapse
Affiliation(s)
- Syed Sarfaraz Hussain
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Sammar Abbas
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Mingke Wei
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Yun Li, ; Arthur J. Ragauskas, ; Quanzi Li,
| | - Arthur J. Ragauskas
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Chemical and Biomolecular Engineering, The University of Tennessee-Knoxville, Knoxville, TN, United States
- *Correspondence: Yun Li, ; Arthur J. Ragauskas, ; Quanzi Li,
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Yun Li, ; Arthur J. Ragauskas, ; Quanzi Li,
| |
Collapse
|
14
|
Zhu L, Wen J, Ma Q, Yan K, Du Y, Chen Z, Lu X, Ren J, Wang Y, Li S, Li Q. Transcriptome profiling provides insights into leaf color changes in two Acer palmatum genotypes. BMC PLANT BIOLOGY 2022; 22:589. [PMID: 36526968 PMCID: PMC9756493 DOI: 10.1186/s12870-022-03979-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ornamental trees with seasonally-dependent leaf color, such as Acer palmatum, have gained worldwide popularity. Leaf color is a main determinant of the ornamental and economic value of A. palmatum. However, the molecular mechanisms responsible for leaf color changes remain unclear. RESULTS We chose A. palmatum cultivars with yellow ('Jinling Huangfeng') and red ('Jinling Danfeng') leaves as the ideal material for studying the complex metabolic networks responsible for variations in leaf coloration. The 24 libraries obtained from four different time points in the growth of 'Jinling Huangfeng' and 'Jinling Danfeng' was subjected to Illumina high-throughput sequencing. We observed that the difference in cyanidin and delphinidin content is the primary reason behind the varying coloration of the leaves. Transcriptomic analyses revealed 225,684 unigenes, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed genes (DEGs) confirmed that they were involved in 'anthocyanin biosynthesis.' Eighteen structural genes involved in anthocyanin biosynthesis were thought to be related to anthocyanin accumulation, whereas 46 MYBs, 33 basic helix-loop-helixs (bHLHs), and 29 WD40s were presumed to be involved in regulating anthocyanin biosynthesis. Based on weighted gene co-expression network analysis (WGCNA), three candidate genes (ApRHOMBOID, ApMAPK, and ApUNE10) were screened in the significant association module with a correlation coefficient (r2) of 0.86. CONCLUSION In this study, the leaf color changes of two A. palmatum genotypes were analyzed. These findings provide novel insights into variations in leaf coloration and suggest pathways for targeted genetic improvements in A. palmatum.
Collapse
Affiliation(s)
- Lu Zhu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, 210014 Nanjing, Jiangsu China
| | - Jing Wen
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, 210014 Nanjing, Jiangsu China
| | - Qiuyue Ma
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, 210014 Nanjing, Jiangsu China
| | - Kunyuan Yan
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, 210014 Nanjing, Jiangsu China
| | - Yiming Du
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, 210014 Nanjing, Jiangsu China
| | - Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongke South Road, 230031 Hefei, Anhui China
| | - Xiaoyu Lu
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongke South Road, 230031 Hefei, Anhui China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongke South Road, 230031 Hefei, Anhui China
| | - Yuelan Wang
- Chenshi Maples Nursery, 313308 Longba Village, Huzhou, Zhejiang China
| | - Shushun Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, 210014 Nanjing, Jiangsu China
| | - Qianzhong Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, 210014 Nanjing, Jiangsu China
| |
Collapse
|
15
|
Zhou T, He Y, Zeng X, Cai B, Qu S, Wang S. Comparative Analysis of Alternative Splicing in Two Contrasting Apple Cultivars Defense against Alternaria alternata Apple Pathotype Infection. Int J Mol Sci 2022; 23:ijms232214202. [PMID: 36430679 PMCID: PMC9693243 DOI: 10.3390/ijms232214202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Alternaria blotch disease, caused by the Alternaria alternata apple pathotype (A. alternata AP), is one of the most serious fungal diseases in apples. Alternative splicing (AS), one of the pivotal post-transcriptional regulatory mechanisms, plays essential roles in various disease resistance responses. Here, we performed RNA-Seq for two apple cultivars (resistant cultivar 'Jonathan' (J) and susceptible cultivar 'Starking Delicious' (SD)) infected by A. alternata AP to further investigate their AS divergence. In total, 1454, 1780, 1367 and 1698 specifically regulated differential alternative splicing (DAS) events were detected in J36, J72, SD36 and SD72 groups, respectively. Retained intron (RI) was the dominant AS pattern. Conformably, 642, 764, 585 and 742 uniquely regulated differentially spliced genes (DSGs) were found during A. alternata AP infection. Comparative analysis of AS genes in differential splicing and expression levels suggested that only a small proportion of DSGs overlapped with differentially expressed genes (DEGs). Gene ontology (GO) enrichment analysis demonstrated that the DSGs were significantly enriched at multiple levels of gene expression regulation. Briefly, the specific AS was triggered in apple defense against A. alternata AP. Therefore, this study facilitates our understanding on the roles of AS regulation in response to A. alternata AP infection in apples.
Collapse
|
16
|
Wang Y, Yin H, Long Z, Zhu W, Yin J, Song X, Li C. DhMYB2 and DhbHLH1 regulates anthocyanin accumulation via activation of late biosynthesis genes in Phalaenopsis-type Dendrobium. FRONTIERS IN PLANT SCIENCE 2022; 13:1046134. [PMID: 36457536 PMCID: PMC9705975 DOI: 10.3389/fpls.2022.1046134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Phalaenopsis-type Dendrobium is a popular orchid with good ornamental and market value. Despite their popularity, molecular regulation of anthocyanin biosynthesis during flower development remains poorly understood. In this study, we systematically investigated the regulatory roles of the transcription factors DhMYB2 and DhbHLH1 in anthocyanins biosynthesis. Gene expression analyses indicated that both DhMYB2 and DhbHLH1 are specifically expressed in flowers and have similar expression patterns, showing high expression in purple floral tissues with anthocyanin accumulation. Transcriptomic analyses showed 29 differentially expressed genes corresponding to eight enzymes in anthocyanin biosynthesis pathway have similar expression patterns to DhMYB2 and DhbHLH1, with higher expression in the purple lips than the yellow petals and sepals of Dendrobium 'Suriya Gold'. Further gene expression analyses and Pearson correlation matrix analyses of Dendrobium hybrid progenies revealed expression profiles of DhMYB2 and DhbHLH1 were positively correlated with the structural genes DhF3'H1, DhF3'5'H2, DhDFR, DhANS, and DhGT4. Yeast one-hybrid and dual-luciferase reporter assays revealed DhMYB2 and DhbHLH1 can bind to promoter regions of DhF3'H1, DhF3'5'H2, DhDFR, DhANS and DhGT4, suggesting a role as transcriptional activators. These results provide new evidence of the molecular mechanisms of DhMYB2 and DhbHLH1 in anthocyanin biosynthesis in Phalaenopsis-type Dendrobium.
Collapse
Affiliation(s)
- Yachen Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, School of Life Sciences, Hainan University, Haikou, China
| | - Hantai Yin
- Haikou Experimental Station, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou, China
| | - Zongxing Long
- Haikou Experimental Station, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou, China
| | - Wenjuan Zhu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, School of Life Sciences, Hainan University, Haikou, China
| | - Junmei Yin
- Haikou Experimental Station, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou, China
| | - Xiqiang Song
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, School of Life Sciences, Hainan University, Haikou, China
| | - Chonghui Li
- Haikou Experimental Station, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou, China
| |
Collapse
|
17
|
Lim SH, Kim DH, Lee JY. RsTTG1, a WD40 Protein, Interacts with the bHLH Transcription Factor RsTT8 to Regulate Anthocyanin and Proanthocyanidin Biosynthesis in Raphanus sativus. Int J Mol Sci 2022; 23:ijms231911973. [PMID: 36233274 PMCID: PMC9570178 DOI: 10.3390/ijms231911973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
MBW complexes, consisting of MYB, basic helix–loop–helix (bHLH), and WD40 proteins, regulate multiple traits in plants, including anthocyanin and proanthocyanidin (PA) biosynthesis and the determination of epidermal cell fate. Here, a WD40 gene from Raphanus sativus, designated TRANSPARENT TESTA GLABRA 1 (RsTTG1), was cloned and functionally characterized. Heterologous expression of RsTTG1 in the Arabidopsis thaliana mutant ttg1-22 background restored accumulation of anthocyanin and PA in the mutant and rescued trichome development. In radish, RsTTG1 was abundantly expressed in all root and leaf tissues, independently of anthocyanin accumulation, while its MBW partners RsMYB1 and TRANSPARENT TESTA 8 (RsTT8) were expressed at higher levels in pigment-accumulating tissues. In yeast two-hybrid analysis, the full-length RsTTG1 protein interacted with RsTT8. Moreover, transient protoplast co-expression assays demonstrated that RsTTG1, which localized to both the cytoplasm and nucleus, moves from the cytoplasm to the nucleus in the presence of RsTT8. When co-expressed with RsMYB1 and RsTT8, RsTTG1 stably activated the promoters of the anthocyanin biosynthesis genes CHALCONE SYNTHASE (RsCHS) and DIHYDROFLAVONOL 4-REDUCTASE (RsDFR). Transient expression of RsTTG1 in tobacco leaves exhibited an increase in anthocyanin accumulation due to activation of the expression of anthocyanin biosynthesis genes when simultaneously expressed with RsMYB1 and RsTT8. These results indicate that RsTTG1 is a vital regulator of pigmentation and trichome development as a functional homolog of AtTTG1.
Collapse
Affiliation(s)
- Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Korea
- Correspondence: ; Tel.: +82-31-670-5105
| | - Da-Hye Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Korea
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
18
|
Alternative Splicing and Its Roles in Plant Metabolism. Int J Mol Sci 2022; 23:ijms23137355. [PMID: 35806361 PMCID: PMC9266299 DOI: 10.3390/ijms23137355] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/02/2023] Open
Abstract
Plant metabolism, including primary metabolism such as tricarboxylic acid cycle, glycolysis, shikimate and amino acid pathways as well as specialized metabolism such as biosynthesis of phenolics, alkaloids and saponins, contributes to plant survival, growth, development and interactions with the environment. To this end, these metabolic processes are tightly and finely regulated transcriptionally, post-transcriptionally, translationally and post-translationally in response to different growth and developmental stages as well as the constantly changing environment. In this review, we summarize and describe the current knowledge of the regulation of plant metabolism by alternative splicing, a post-transcriptional regulatory mechanism that generates multiple protein isoforms from a single gene by using alternative splice sites during splicing. Numerous genes in plant metabolism have been shown to be alternatively spliced under different developmental stages and stress conditions. In particular, alternative splicing serves as a regulatory mechanism to fine-tune plant metabolism by altering biochemical activities, interaction and subcellular localization of proteins encoded by splice isoforms of various genes.
Collapse
|
19
|
Silencing of Dihydroflavonol 4-reductase in Chrysanthemum Ray Florets Enhances Flavonoid Biosynthesis and Antioxidant Capacity. PLANTS 2022; 11:plants11131681. [PMID: 35807633 PMCID: PMC9269342 DOI: 10.3390/plants11131681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 01/08/2023]
Abstract
Flavonoid biosynthesis requires the activities of several enzymes, which form weakly-bound, ordered protein complexes termed metabolons. To decipher flux regulation in the flavonoid biosynthetic pathway of chrysanthemum (Chrysanthemum morifolium Ramat), we suppressed the gene-encoding dihydroflavonol 4-reductase (DFR) through RNA interference (RNAi)-mediated post-transcriptional gene silencing under a floral-specific promoter. Transgenic CmDFR-RNAi chrysanthemum plants were obtained by Agrobacterium-mediated transformation. Genomic PCR analysis of CmDFR-RNAi chrysanthemums propagated by several rounds of stem cuttings verified stable transgene integration into the genome. CmDFR mRNA levels were reduced by 60–80% in CmDFR-RNAi lines compared to those in wild-type (WT) plants in ray florets, but not leaves. Additionally, transcript levels of flavonoid biosynthetic genes were highly upregulated in ray florets of CmDFR-RNAi chrysanthemum relative to those in WT plants, while transcript levels in leaves were similar to WT. Total flavonoid contents were high in ray florets of CmDFR-RNAi chrysanthemums, but flavonoid contents of leaves were similar to WT, consistent with transcript levels of flavonoid biosynthetic genes. Ray florets of CmDFR-RNAi chrysanthemums exhibited stronger antioxidant capacity than those of WT plants. We propose that post-transcriptional silencing of CmDFR in ray florets modifies metabolic flux, resulting in enhanced flavonoid content and antioxidant activity.
Collapse
|
20
|
Comparative Transcriptome Analysis of Purple and Green Non-Heading Chinese Cabbage and Function Analyses of BcTT8 Gene. Genes (Basel) 2022; 13:genes13060988. [PMID: 35741750 PMCID: PMC9222865 DOI: 10.3390/genes13060988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023] Open
Abstract
Non-heading Chinese cabbage (Brassica campestris ssp. chinensis) is an important vegetative crop in the south of China. As an antioxidant, anthocyanin is the major quality trait for vegetables with purple leaves or petioles. However, the molecular biosynthetic mechanism of anthocyanin in non-heading Chinese cabbage has not been explained exclusively. In this study, two non-heading Chinese cabbage with contrasting colors in the leaves were used as the materials for RNA-seq. A total of 906 DEGs were detected, and we found that the anthocyanin and flavonoid biosynthetic pathways are significantly enriched in the purple NHCC. The transcriptome result was verified by RT-qPCR. Though bioinformatics analysis, BcTT8 was selected as the candidate gene for the regulation of anthocyanin synthesis, and the characterization of BcTT8 was elucidated by the functional analyses. The results proved that BcTT8 is a nucleus protein and phylogenetically close to the TT8 protein from Brassica. After silencing BcTT8, the total anthocyanin content of pTY-BcTT8 plants decreased by 42.5%, and the relative expression levels of anthocyanin pathway genes BcDFR, BcLODX and BcUF3GT-1 were significantly downregulated, while the transcription level of BcFLS was significantly upregulated. Compared with the wild type, the transgenic Arabidopsis showed obvious violet in the cotyledons part, and the anthocyanin biosynthetic genes such as AtDFR and AtLODX were significantly upregulated. In conclusion, BcTT8 is critical in the anthocyanin synthesis process of non-heading Chinese cabbage. Our findings illustrated the molecular mechanism of anthocyanin biosynthesis in non-heading Chinese cabbage.
Collapse
|
21
|
Kim J, Kim DH, Lee JY, Lim SH. The R3-Type MYB Transcription Factor BrMYBL2.1 Negatively Regulates Anthocyanin Biosynthesis in Chinese Cabbage ( Brassica rapa L.) by Repressing MYB-bHLH-WD40 Complex Activity. Int J Mol Sci 2022; 23:ijms23063382. [PMID: 35328800 PMCID: PMC8949199 DOI: 10.3390/ijms23063382] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
Chinese cabbage (Brassica rapa L.) leaves are purple in color due to anthocyanin accumulation and have nutritional and aesthetic value, as well as antioxidant properties. Here, we identified the R3 MYB transcription factor BrMYBL2.1 as a key negative regulator of anthocyanin biosynthesis. A Chinese cabbage cultivar with green leaves harbored a functional BrMYBL2.1 protein, designated BrMYBL2.1-G, with transcriptional repressor activity of anthocyanin biosynthetic genes. By contrast, BrMYBL2.1 from a Chinese cabbage cultivar with purple leaves carried a poly(A) insertion in the third exon of the gene, resulting in the insertion of multiple lysine residues in the predicted protein, designated BrMYBL2.1-P. Although both BrMYBL2.1 variants localized to the nucleus, only BrMYBL2.1-G interacted with its cognate partner BrTT8. Transient infiltration assays in tobacco leaves revealed that BrMYBL2.1-G, but not BrMYBL2.1-P, actively represses pigment accumulation by inhibiting the transcription of anthocyanin biosynthetic genes. Transient promoter activation assay in Arabidopsis protoplasts verified that BrMYBL2.1-G, but not BrMYBL2.1-P, can repress transcriptional activation of BrCHS and BrDFR, which was activated by co-expression with BrPAP1 and BrTT8. We determined that BrMYBL2.1-P may be more prone to degradation than BrMYBL2.1-G via ubiquitination. Taken together, these results demonstrate that BrMYBL2.1-G blocks the activity of the MBW complex and thus represses anthocyanin biosynthesis, whereas the variant BrMYBL2.1-P from purple Chinese cabbage cannot, thus leading to higher anthocyanin accumulation.
Collapse
Affiliation(s)
- JiYeon Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea; (J.K.); (D.-H.K.)
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Korea
| | - Da-Hye Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea; (J.K.); (D.-H.K.)
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Korea
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
- Correspondence: (J.-Y.L.); (S.-H.L.); Tel.: +82-31-670-5105 (S.-H.L.)
| | - Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea; (J.K.); (D.-H.K.)
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Korea
- Correspondence: (J.-Y.L.); (S.-H.L.); Tel.: +82-31-670-5105 (S.-H.L.)
| |
Collapse
|
22
|
Chili Pepper AN2 (CaAN2): A Visible Selection Marker for Nondestructive Monitoring of Transgenic Plants. PLANTS 2022; 11:plants11060820. [PMID: 35336702 PMCID: PMC8955877 DOI: 10.3390/plants11060820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022]
Abstract
Selecting transformed plants is generally time consuming and laborious. To develop a method for transgenic plant selection without the need for antibiotics or herbicides, we evaluated the suitability of the R2R3 MYB transcription factor gene CaAN2 from purple chili pepper (Capsicum annuum) for use as a visible selection marker. CaAN2 positively regulates anthocyanin biosynthesis. Transient expression assays in tobacco (Nicotiana tabacum) leaves revealed that CaAN2 actively induced sufficient pigment accumulation for easy detection without the need for a basic helix-loop-helix (bHLH) protein as a cofactor; similar results were obtained for tobacco leaves transiently co-expressing the anthocyanin biosynthesis regulators bHLH B-Peru from maize and R2R3 MYB mPAP1D from Arabidopsis. Tobacco plants harboring CaAN2 were readily selected based on their red color at the shoot regeneration stage due to anthocyanin accumulation without the need to impose selective pressure from herbicides. Transgenic tobacco plants harboring CaAN2 showed strong pigment accumulation throughout the plant body. The ectopic expression of CaAN2 dramatically promoted the transcription of anthocyanin biosynthetic genes as well as regulators of this process. The red coloration of tobacco plants harboring CaAN2 was stably transferred to the next generation. Therefore, anthocyanin accumulation due to CaAN2 expression is a useful visible trait for stable transformation, representing an excellent alternative selection system for transgenic plants.
Collapse
|
23
|
Xiang L, Liu X, Shi Y, Li Y, Li W, Li F, Chen K. Comparative Transcriptome Analysis Revealed Two Alternative Splicing bHLHs Account for Flower Color Alteration in Chrysanthemum. Int J Mol Sci 2021; 22:12769. [PMID: 34884575 PMCID: PMC8657904 DOI: 10.3390/ijms222312769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
'Jimba' is a white chrysanthemum cultivar, which occasionally and spontaneously produces red flower petals under natural cultivation due to cyanidin-based anthocyanin accumulation. To investigate the underlying mechanism of this process, a comparative transcriptome was analyzed between white and turning red 'Jimba'. The structural and regulatory genes of anthocyanin pathway were significantly up-regulated in turning red 'Jimba'. Among them, two alternative splicings, CmbHLH2 and CmbHLH2.1, showed the most significantly up-regulated in turning red tissue. Transiently over-expressed 35S::CmMYB6-CmbHLH2 strongly induced anthocyanin accumulation in 'Jimba' flower petals, while moderate amount of anthocyanin was detected when over-expressed 35S::CmMYB6-CmbHLH2.1. Both CmbHLH2 and CmbHLH2.1 could interact with CmMYB6 to activate CmDFR promoter according to Yeast two-hybrid and dual-luciferase assay. Moreover, CmMYB6-CmbHLH2 but not CmMYB6-CmbHLH2.1 could activate the CmbHLH2 promoter to provide positive feedback loop regulation. Taken together, it suggested that both CmbHLH2 and CmbHLH2.1 involved in regulation flower color alteration in turning red 'Jimba', and CmbHLH2 played a predominant role in this process.
Collapse
Affiliation(s)
- Lili Xiang
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.L.); (Y.S.); (Y.L.); (K.C.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Xiaofen Liu
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.L.); (Y.S.); (Y.L.); (K.C.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yanna Shi
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.L.); (Y.S.); (Y.L.); (K.C.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yajing Li
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.L.); (Y.S.); (Y.L.); (K.C.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Weidong Li
- Hunan Horticultural Research Institute, Changsha 410125, China;
- Hunan Key Laboratory of Germplasm Innovation and Comprehensive Utilization of Landscape Flowers, Changsha 410125, China
| | - Fang Li
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.L.); (Y.S.); (Y.L.); (K.C.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.L.); (Y.S.); (Y.L.); (K.C.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
24
|
Fruit Colour and Novel Mechanisms of Genetic Regulation of Pigment Production in Tomato Fruits. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7080259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fruit colour represents a genetic trait with ecological and nutritional value. Plants mainly use colour to attract animals and favour seed dispersion. Thus, in many species, fruit colour coevolved with frugivories and their preferences. Environmental factors, however, represented other adaptive forces and further diversification was driven by domestication. All these factors cooperated in the evolution of tomato fruit, one of the most important in human nutrition. Tomato phylogenetic history showed two main steps in colour evolution: the change from green-chlorophyll to red-carotenoid pericarp, and the loss of the anthocyanic pigmentation. These events likely occurred with the onset of domestication. Then spontaneous mutations repeatedly occurred in carotenoid and phenylpropanoid pathways, leading to colour variants which often were propagated. Introgression breeding further enriched the panel of pigmentation patterns. In recent decades, the genetic determinants underneath tomato colours were identified. Novel evidence indicates that key regulatory and biosynthetic genes undergo mechanisms of gene expression regulation that are much more complex than what was imagined before: post-transcriptional mechanisms, with RNA splicing among the most common, indeed play crucial roles to fine-tune the expression of this trait in fruits and offer new substrate for the rise of genetic variables, thus providing further evolutionary flexibility to the character.
Collapse
|