1
|
Chen S, Wang Y, Gao J, Chen X, Qi J, Peng Z, Chen B, Pan H, Liang C, Liu J, Wang Y, Wei G, Jiao S. Agricultural tillage practice and rhizosphere selection interactively drive the improvement of soybean plant biomass. PLANT, CELL & ENVIRONMENT 2023; 46:3542-3557. [PMID: 37564021 DOI: 10.1111/pce.14694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Rhizosphere microbes play key roles in plant growth and productivity in agricultural systems. One of the critical issues is revealing the interaction of agricultural management (M) and rhizosphere selection effects (R) on soil microbial communities, root exudates and plant productivity. Through a field management experiment, we found that bacteria were more sensitive to the M × R interaction effect than fungi, and the positive effect of rhizosphere bacterial diversity on plant biomass existed in the bacterial three two-tillage system. In addition, inoculation experiments demonstrated that the nitrogen cycle-related isolate Stenotrophomonas could promote plant growth and alter the activities of extracellular enzymes N-acetyl- d-glucosaminidase and leucine aminopeptidase in rhizosphere soil. Microbe-metabolites network analysis revealed that hubnodes Burkholderia-Caballeronia-Paraburkholderia and Pseudomonas were recruited by specific root metabolites under the M × R interaction effect, and the inoculation of 10 rhizosphere-matched isolates further proved that these microbes could promote the growth of soybean seedlings. Kyoto Encyclopaedia of Genes and Genomes pathway analysis indicated that the growth-promoting mechanisms of these beneficial genera were closely related to metabolic pathways such as amino acid metabolism, melatonin biosynthesis, aerobactin biosynthesis and so on. This study provides field observation and experimental evidence to reveal the close relationship between beneficial rhizosphere microbes and plant productivity under the M × R interaction effect.
Collapse
Affiliation(s)
- Shi Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiamin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xingyu Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiejun Qi
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Ziheng Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Beibei Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haibo Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Chunling Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiai Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yihe Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
2
|
Chen L, Liang Z, Xie S, Liu W, Wang M, Yan J, Yang S, Jiang B, Peng Q, Lin Y. Responses of differential metabolites and pathways to high temperature in cucumber anther. FRONTIERS IN PLANT SCIENCE 2023; 14:1131735. [PMID: 37123826 PMCID: PMC10140443 DOI: 10.3389/fpls.2023.1131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Cucumber is one of the most important vegetable crops, which is widely planted all over the world. Cucumber always suffers from high-temperature stress in South China in summer. In this study, liquid chromatography-mass spectrometry (LC-MS) analysis was used to study the differential metabolites of cucumber anther between high-temperature (HT) stress and normal condition (CK). After HT, the pollen fertility was significantly reduced, and abnormal anther structures were observed by the paraffin section. In addition, the metabolomics analysis results showed that a total of 125 differential metabolites were identified after HT, consisting of 99 significantly upregulated and 26 significantly downregulated metabolites. Among these differential metabolites, a total of 26 related metabolic pathways were found, and four pathways showed significant differences, namely, porphyrin and chlorophyll metabolism; plant hormone signal transduction; amino sugar and nucleotide sugar metabolism; and glycine, serine, and threonine metabolism. In addition, pollen fertility was decreased by altering the metabolites of plant hormone signal transduction and amino acid and sugar metabolism pathway under HT. These results provide a comprehensive understanding of the metabolic changes in cucumber anther under HT.
Collapse
Affiliation(s)
- Lin Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Zhaojun Liang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Shuyan Xie
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Songguang Yang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Qingwu Peng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Yu’e Lin
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
- *Correspondence: Yu’e Lin,
| |
Collapse
|
3
|
Zhu J, Li A, Sun C, Zhang J, Hu J, Wang S, Zhou N, Xiong Q. Rice Quality-Related Metabolites and the Regulatory Roles of Key Metabolites in Metabolic Pathways of High-Quality Semi-Glutinous japonica Rice Varieties. Foods 2022; 11:foods11223676. [PMID: 36429268 PMCID: PMC9689214 DOI: 10.3390/foods11223676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
We explored the related metabolites produced by different quality semi-glutinous japonica rice varieties and the modulatory role of key metabolites in metabolic mechanisms. In this study, three high-quality edible semi-glutinous rice varieties were employed as investigational materials, the metabolites of the three varieties were detected using LC-MS metabolomics technology, and the rice quality traits of the three rice varieties were determined. The taste value (TV) of Yangnongxiang 28 (YNX28H) was substantially higher than that of Hongyang 5 hao (HY5H) and Nanjing 5718 (NJ5718), and the hardness (HA) of YNX28H was significantly lower than that of HY5H and NJ5718. The HA was significantly negatively correlated with the TV. The highest chalkiness rate (CR) and chalkiness degree (CD) were observed for NJ5718, and the lowest CR and CD were observed for HY5H. HY5H had a substantially lower protein content (PC) than YNX28H and NJ5718 and a markedly higher amylose content (AC) than those two varieties. Overall, 188 differential metabolites (DMs) were recognized between HY5H and NJ5718. A total of 136 DMs were detected between YNX28H and NJ5718, and 198 DMs were recognized between HY5H and YNX28H. The metabolites with a strong correlation with rice quality were mainly associated with amino acid metabolism, lipid metabolism and the citrate cycle. The key metabolites in the metabolic pathway include lipid metabolites (sagittariol, glycerophosphocholine, gamma-eudesmol rhamnoside, goshonoside F1, diosbulbinoside F, and corchorifatty acid F), amino acid metabolites (pantothenic acid, L-serine, L-proline, L-aspartic acid, L-glutamate, L-asparagine, and glutathione) and carbohydrate metabolites (sucrose, levan, D-maltose, and amylose). These key metabolites play important regulatory roles in metabolic mechanisms, providing a theoretical basis for breeding new high-quality edible rice varieties.
Collapse
Affiliation(s)
- Jinyan Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Ao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Changhui Sun
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Jiao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Jinlong Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Shuai Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Nianbing Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Qiangqiang Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
4
|
Metabolomics and biochemical analyses revealed metabolites important for the antioxidant properties of purple glutinous rice. Food Chem 2022; 389:133080. [DOI: 10.1016/j.foodchem.2022.133080] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/03/2022] [Accepted: 04/22/2022] [Indexed: 01/22/2023]
|
5
|
Yang K, Zhang P, Lv T, Wu J, Liu Q. Acupuncture at Taichong and Zusanli points exerts hypotensive effect in spontaneously hypertensive rats by metabolomic analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1207:123352. [PMID: 35841734 DOI: 10.1016/j.jchromb.2022.123352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND The development of hypertension affects several target organs, the kidneys being one of them. Acupuncture has been used to treat hypertension for a long time. Several mechanisms of acupuncture on hypotensive effect have been reveled, while the effects of acupuncture on the alterations in renal cortex from a metabolomic perspective are still unclear. METHODS Twelve male Wistar rats served as the control group (Wistar Group). Twenty-four male spontaneously hypertensive rats (SHR) were randomly divided into two groups: the model group (SHR Group) and the acupuncture group (AC Group). In the AC Group, milli-needle acupuncture was used to puncture the bilateral Taichong (LR3) and Zusanli (ST36) points. Blood pressure values were measured weekly and the rats were euthanized after three weeks. Renal cortical tissues were collected for non-targeted and targeted metabolomic analyses. RESULTS Acupuncture reduced blood pressure values in rats (Compared with the SHR Group, P < 0.001). Thirteen metabolites with significant differences and three metabolic pathways were screened by untargeted metabolomics. The SHR Group was compared with the Wistar Group and AC Group both involving metabolites and pathways related to bile acid metabolism. Furthermore, targeted metabolomics quantification of four bile acids, Cholic acid (CA), Allocholic acid (ACA), Deoxycholic acid (DCA) and Chenodeoxycholic acid (CDCA), revealed that all bile acid concentrations were relatively high in the SHR Group, except for ACA. CONCLUSION This study indicate that abnormal bile acid metabolism may be an independent risk factor the development of hypertension. Acupuncture at Taichong and at Zusanli points effectively modulated bile acids metabolism in SHR renal cortex tissues to exert a hypotensive effect, and CA may be able to be a new target for the treatment of hypertension.
Collapse
Affiliation(s)
- Kezhen Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Pingna Zhang
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Taotao Lv
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiaojuan Wu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qingguo Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
6
|
Yang K, Lv T, Wu J, Zhang X, Xue Y, Yu P, Liu Q. The Protective Effect of Electroacupuncture on the Renal Cortex of SHR: A Metabonomic Analysis. Biomed Chromatogr 2022; 36:e5338. [PMID: 35028961 DOI: 10.1002/bmc.5338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/07/2022]
Abstract
Hypertension will affect multiple organs in the body during the development of the disease. The antihypertensive effect of acupuncture on hypertension has been confirmed. The study of how the protective effect of electroacupuncture on the renal cortex of SHR is achieved has not yet been studied. The purpose of this study is to understand the impact of electroacupuncture on the blood pressure of spontaneously hypertensive rat (SHR) and the impact on metabolites in the renal cortex, looking for potential differential metabolites, and then proceeding to the next step of exploratory research. In the experiment, the experimental animals were divided into four groups: Control group, Model group, Electroacupuncture group, Losartan Potassium group, and electroacupuncture on bilateral Taichong (LR3) and Zusanli (ST36) lasted for 3 weeks, and the renal cortex was collected for metabonomics research. UHPLC-MS was used to analyze the changes in the metabolic spectrum of renal cortex tissue. The results showed that electroacupuncture can significantly reduce the blood pressure of SHR. A total of 12 metabolites have changed significantly in the comparison between each group and Model group. The possible mechanism is that the primary bile acid biosynthesis, bile secretion, tryptophan metabolism and other metabolic pathways affect the renal cortex.
Collapse
Affiliation(s)
- Kezhen Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Taotao Lv
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaojuan Wu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xudong Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yanjun Xue
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Pengcheng Yu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|