1
|
Csorba C, Rodić N, Antonielli L, Sessitsch A, Vlachou A, Ahmad M, Compant S, Puschenreiter M, Molin EM, Assimopoulou AN, Brader G. Soil pH, developmental stages and geographical origin differently influence the root metabolomic diversity and root-related microbial diversity of Echium vulgare from native habitats. FRONTIERS IN PLANT SCIENCE 2024; 15:1369754. [PMID: 38984162 PMCID: PMC11232435 DOI: 10.3389/fpls.2024.1369754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/03/2024] [Indexed: 07/11/2024]
Abstract
Improved understanding of the complex interaction between plant metabolism, environmental conditions and the plant-associated microbiome requires an interdisciplinary approach: Our hypothesis in our multiomics study posited that several environmental and biotic factors have modulating effects on the microbiome and metabolome of the roots of wild Echium vulgare plants. Furthermore, we postulated reciprocal interactions between the root metabolome and microbiome. We investigated the metabolic content, the genetic variability, and the prokaryotic microbiome in the root systems of wild E. vulgare plants at rosette and flowering stages across six distinct locations. We incorporated the assessment of soil microbiomes and the measurement of selected soil chemical composition factors. Two distinct genetic clusters were determined based on microsatellite analysis without a consistent alignment with the geographical proximity between the locations. The microbial diversity of both the roots of E. vulgare and the surrounding bulk soil exhibited significant divergence across locations, varying soil pH characteristics, and within the identified plant genetic clusters. Notably, acidophilic bacteria were characteristic inhabitants of both soil and roots under acidic soil conditions, emphasizing the close interconnectedness between these compartments. The metabolome of E. vulgare significantly differed between root samples from different developmental stages, geographical locations, and soil pH levels. The developmental stage was the dominant driver of metabolome changes, with significantly higher concentrations of sugars, pyrrolizidine alkaloids, and some of their precursors in rosette stage plant roots. Our study featured the complex dynamics between soil pH, plant development, geographical locations, plant genetics, plant metabolome and microbiome, shedding light on existing knowledge gaps.
Collapse
Affiliation(s)
- Cintia Csorba
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
| | - Nebojša Rodić
- Aristotle University of Thessaloniki, School of Chemical Engineering, Laboratory of Organic Chemistry and Center for Interdisciplinary Research and Innovation, Natural Products Research Centre of Excellence (NatPro-AUTh), Thessaloniki, Greece
| | - Livio Antonielli
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
| | - Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
| | - Angeliki Vlachou
- Aristotle University of Thessaloniki, School of Chemical Engineering, Laboratory of Organic Chemistry and Center for Interdisciplinary Research and Innovation, Natural Products Research Centre of Excellence (NatPro-AUTh), Thessaloniki, Greece
| | - Muhammad Ahmad
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
- Department of Forest Growth, Silviculture and Genetics, Austrian Research Centre for Forests (BFW), Vienna, Austria
| | - Stéphane Compant
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
| | - Markus Puschenreiter
- Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Eva M. Molin
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
| | - Andreana N. Assimopoulou
- Aristotle University of Thessaloniki, School of Chemical Engineering, Laboratory of Organic Chemistry and Center for Interdisciplinary Research and Innovation, Natural Products Research Centre of Excellence (NatPro-AUTh), Thessaloniki, Greece
| | - Günter Brader
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
| |
Collapse
|
2
|
Zhao Y, Cartabia A, Garcés-Ruiz M, Herent MF, Quetin-Leclercq J, Ortiz S, Declerck S, Lalaymia I. Arbuscular mycorrhizal fungi impact the production of alkannin/shikonin and their derivatives in Alkanna tinctoria Tausch. grown in semi-hydroponic and pot cultivation systems. Front Microbiol 2023; 14:1216029. [PMID: 37637105 PMCID: PMC10447974 DOI: 10.3389/fmicb.2023.1216029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Alkanna tinctoria Tausch. is a medicinal plant well-known to produce important therapeutic compounds, such as alkannin/shikonin and their derivatives (A/Sd). It associates with arbuscular mycorrhizal fungi (AMF), which are known, amongst others beneficial effects, to modulate the plant secondary metabolites (SMs) biosynthesis. However, to the best of our knowledge, no study on the effects of AMF strains on the growth and production of A/Sd in A. tinctoria has been reported in the literature. Methods Here, three experiments were conducted. In Experiment 1, plants were associated with the GINCO strain Rhizophagus irregularis MUCL 41833 and, in Experiment 2, with two strains of GINCO (R. irregularis MUCL 41833 and Rhizophagus aggregatus MUCL 49408) and two native strains isolated from wild growing A. tinctoria (R. irregularis and Septoglomus viscosum) and were grown in a semi-hydroponic (S-H) cultivation system. Plants were harvested after 9 and 37 days in Experiment 1 and 9 days in Experiment 2. In Experiment 3, plants were associated with the two native AMF strains and with R. irregularis MUCL 41833 and were grown for 85 days in pots under greenhouse conditions. Quantification and identification of A/Sd were performed by HPLC-PDA and by HPLC-HRMS/MS, respectively. LePGT1, LePGT2, and GHQH genes involved in the A/Sd biosynthesis were analyzed through RT-qPCR. Results In Experiment 1, no significant differences were noticed in the production of A/Sd. Conversely, in Experiments 2 and 3, plants associated with the native AMF R. irregularis had the highest content of total A/Sd expressed as shikonin equivalent. In Experiment 1, a significantly higher relative expression of both LePGT1 and LePGT2 was observed in plants inoculated with R. irregularis MUCL 41833 compared with control plants after 37 days in the S-H cultivation system. Similarly, a significantly higher relative expression of LePGT2 in plants inoculated with R. irregularis MUCL 41833 was noticed after 9 versus 37 days in the S-H cultivation system. In Experiment 2, a significant lower relative expression of LePGT2 was observed in native AMF R. irregularis inoculated plants compared to the control. Discussion Overall, our study showed that the native R. irregularis strain increased A/Sd production in A. tinctoria regardless of the growing system used, further suggesting that the inoculation of native/best performing AMF is a promising method to improve the production of important SMs.
Collapse
Affiliation(s)
- Yanyan Zhao
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Annalisa Cartabia
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Mónica Garcés-Ruiz
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Marie-France Herent
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain – UCLouvain, Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain – UCLouvain, Brussels, Belgium
| | - Sergio Ortiz
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain – UCLouvain, Brussels, Belgium
- UMR 7200, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CNRS, Strasbourg Drug Discovery and Development Institute (IMS), Illkirch-Graffenstaden, France
| | - Stéphane Declerck
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Ismahen Lalaymia
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Grossfurthner LP, Milano ER, Hohenlohe PA, Waits LP, Richardson BA. Population structure and hybridization under contemporary and future climates in a heteroploid foundational shrub species ( Artemisia tridentata). FRONTIERS IN PLANT SCIENCE 2023; 14:1155868. [PMID: 37284723 PMCID: PMC10239881 DOI: 10.3389/fpls.2023.1155868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/20/2023] [Indexed: 06/08/2023]
Abstract
Current and past climatic changes can shift plant climatic niches, which may cause spatial overlap or separation between related taxa. The former often leads to hybridization and introgression, which may generate novel variation and influence the adaptive capacity of plants. An additional mechanism facilitating adaptations to novel environments and an important evolutionary driver in plants is polyploidy as the result of whole genome duplication. Artemisia tridentata (big sagebrush) is a landscape-dominating foundational shrub in the western United States which occupies distinct ecological niches, exhibiting diploid and tetraploid cytotypes. Tetraploids have a large impact on the species' landscape dominance as they occupy a preponderance of the arid spectrum of A. tridentata range. Three distinct subspecies are recognized, which co-occur in ecotones - the transition zone between two or more distinct ecological niches - allowing for hybridization and introgression. Here we assess the genomic distinctiveness and extent of hybridization among subspecies at different ploidies under both contemporary and predicted future climates. We sampled five transects throughout the western United States where a subspecies overlap was predicted using subspecies-specific climate niche models. Along each transect, we sampled multiple plots representing the parental and the potential hybrid habitats. We performed reduced representation sequencing and processed the data using a ploidy-informed genotyping approach. Population genomic analyses revealed distinct diploid subspecies and at least two distinct tetraploid gene pools, indicating independent origins of the tetraploid populations. We detected low levels of hybridization (2.5%) between the diploid subspecies, while we found evidence for increased admixture between ploidy levels (18%), indicating hybridization has an important role in the formation of tetraploids. Our analyses highlight the importance of subspecies co-occurrence within these ecotones to maintain gene exchange and potential formation of tetraploid populations. Genomic confirmations of subspecies in the ecotones support the subspecies overlap predicted by the contemporary climate niche models. However, future mid-century projections of subspecies niches predict a substantial loss in range and subspecies overlap. Thus, reductions in hybridization potential could affect new recruitment of genetically variable tetraploids that are vital to this species' ecological role. Our results underscore the importance of ecotone conservation and restoration.
Collapse
Affiliation(s)
- Lukas P. Grossfurthner
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Elizabeth R. Milano
- Rocky Mountain Research Station, United States Department of Agriculture (USDA) Forest Service, Moscow, ID, United States
| | - Paul A. Hohenlohe
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Lisette P. Waits
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, United States
| | - Bryce A. Richardson
- Rocky Mountain Research Station, United States Department of Agriculture (USDA) Forest Service, Moscow, ID, United States
| |
Collapse
|
4
|
Nikolova M, Aneva I, Zhelev P, Semerdjieva I, Zheljazkov VD, Vladimirov V, Stoyanov S, Berkov S, Yankova-Tsvetkova E. Metabolic Profiles, Genetic Diversity, and Genome Size of Bulgarian Population of Alkanna tinctoria. PLANTS (BASEL, SWITZERLAND) 2022; 12:111. [PMID: 36616241 PMCID: PMC9823991 DOI: 10.3390/plants12010111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Alkanna tinctoria (L.) Tausch Boraginaceae is a medicinal plant whose root is used for its antimicrobial and anti-inflammatory properties. A. tinctoria roots have been subject to numerous studies. However, the aerial parts have been explored less. The objective of the present study was to compare the chemical profile of aerial parts and roots as well as the total alkannin content in roots of 11 populations of the species from different floristic regions of Bulgaria. Methanolic extracts from 22 samples were analyzed by GC/MS. Phenolic, fatty, and organic acids, sterols, polyols, fatty alcohols, and sugars were identified. Ononitol (4-O-methyl-myo-inositol) was found as the main compound in the aerial parts. The total alkannin content in the roots was evaluated by the spectrophotometric method and compared with that of the commercial product. Populations with high alkannin content and rich in other bioactive compounds were identified. A relatively low genetic diversity in the studied populations was observed. The present study is the first comprehensive study on metabolite profiles and genetic diversity of the Bulgarian populations of A. tinctoria. The occurrence of ononitol in the aerial parts of the species is reported for the first time, as well as the phenolic acid profiles of the species in both aerial parts and roots. The results showed that aerial parts of the plant are also promising for use as a source of valuable biologically active substances.
Collapse
Affiliation(s)
- Milena Nikolova
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ina Aneva
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Petar Zhelev
- Department of Dendrology, University of Forestry, 1797 Sofia, Bulgaria
| | - Ivanka Semerdjieva
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Department of Botany and Agrometeorology, Agricultural University, Mendeleev 12, 4000 Plovdiv, Bulgaria
| | - Valtcho D. Zheljazkov
- Department of Crop and Soil Science, Oregon State University, 3050 SW Campus Way, 109 Crop Science, Building, Corvallis, OR 97331, USA
| | - Vladimir Vladimirov
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Botanical Garden, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria
| | - Stoyan Stoyanov
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Strahil Berkov
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Elina Yankova-Tsvetkova
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Ahmad M, Varela Alonso A, Koletti AE, Assimopoulou AN, Declerck S, Schneider C, Molin EM. Transcriptional dynamics of Chitinophaga sp. strain R-73072-mediated alkannin/shikonin biosynthesis in Lithospermum officinale. Front Microbiol 2022; 13:978021. [PMID: 36071973 PMCID: PMC9441710 DOI: 10.3389/fmicb.2022.978021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 01/09/2023] Open
Abstract
Plants are colonized by a wide range of bacteria, several of which are known to confer benefits to their hosts such as enhancing plant growth and the biosynthesis of secondary metabolites (SMs). Recently, it has been shown that Chitinophaga sp. strain R-73072 enhances the production of alkannin/shikonin, SMs of pharmaceutical and ecological importance. However, the mechanisms by which this bacterial strain increases these SMs in plants are not yet understood. To gain insight into these mechanisms, we analyzed the molecular responses of Lithospermum officinale, an alkannin/shikonin producing member of Boraginaceae, to inoculation with R-73072 in a gnotobiotic system using comparative transcriptomics and targeted metabolite profiling of root samples. We found that R-73072 modulated the expression of 1,328 genes, of which the majority appeared to be involved in plant defense and SMs biosynthesis including alkannin/shikonin derivatives. Importantly, bacterial inoculation induced the expression of genes that predominately participate in jasmonate and ethylene biosynthesis and signaling, suggesting an important role of these phytohormones in R-73072-mediated alkannin/shikonin biosynthesis. A detached leaf bioassay further showed that R-73072 confers systemic protection against Botrytis cinerea. Finally, R-73072-mediated coregulation of genes involved in plant defense and the enhanced production of alkannin/shikonin esters further suggest that these SMs could be important components of the plant defense machinery in alkannin/shikonin producing species.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria,Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Alicia Varela Alonso
- Institut für Pflanzenkultur GmbH & Co. KG., Schnega, Germany,Earth and Life Institute, Mycology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Antigoni E. Koletti
- School of Chemical Engineering, Laboratory of Organic Chemistry and Center for Interdisciplinary Research and Innovation of AUTh, Natural Products, Research Centre of Excellence (NatPro-AUTh), Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreana N. Assimopoulou
- School of Chemical Engineering, Laboratory of Organic Chemistry and Center for Interdisciplinary Research and Innovation of AUTh, Natural Products, Research Centre of Excellence (NatPro-AUTh), Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stéphane Declerck
- Earth and Life Institute, Mycology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Eva M. Molin
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria,*Correspondence: Eva M. Molin,
| |
Collapse
|
6
|
Salvado P, Aymerich Boixader P, Parera J, Vila Bonfill A, Martin M, Quélennec C, Lewin J, Delorme‐Hinoux V, Bertrand JAM. Little hope for the polyploid endemic Pyrenean Larkspur ( Delphinium montanum): Evidences from population genomics and Ecological Niche Modeling. Ecol Evol 2022; 12:e8711. [PMID: 35342590 PMCID: PMC8932081 DOI: 10.1002/ece3.8711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Species endemic to restricted geographical ranges represent a particular conservation issue, be it for their heritage interest. In a context of global change, this is particularly the case for plants which belong to high-mountain ecosystems and, because of their ecological requirements, are doomed to survive or disappear on their "sky islands". The Pyrenean Larkspur (Delphinium montanum, Ranunculaceae) is endemic to the Eastern part of the Pyrenees (France and Spain). It is now only observable at a dozen of localities and some populations show signs of decline, such as a recurrent lack of flowering. Implementing population genomics approach (e.g., RAD-seq like) is particularly useful to understand genomic patterns of diversity and differentiation in order to provide recommendations in term of conservation. However, it remains challenging for species such as D. montanum that are autotetraploid with a large genome size (1C-value >10 pg) as most methods currently available were developed for diploid species. A Bayesian framework able to call genotypes with uncertainty allowed us to assess genetic diversity and population structure in this system. Our results show evidence for inbreeding (mean G IS = 0.361) within all the populations and substantial population structure (mean G ST = 0.403) at the metapopulation level. In addition to a lack of connectivity between populations, spatial projections of Ecological Niche Modeling (ENM) analyses under different climatic scenarios predict a dramatic decrease of suitable habitat for D. montanum in the future. Based on these results, we discuss the relevance and feasibility of different conservation measures.
Collapse
Affiliation(s)
- Pascaline Salvado
- Laboratoire Génome et Développement des Plantes (LGDP, UMR 5096 UPVD/CNRS)Université de Perpignan Via DomitiaPerpignanFrance
| | | | - Josep Parera
- Fédération des Réserves Naturelles CatalanesPradesFrance
| | | | - Maria Martin
- Fédération des Réserves Naturelles CatalanesPradesFrance
| | | | | | - Valérie Delorme‐Hinoux
- Laboratoire Génome et Développement des Plantes (LGDP, UMR 5096 UPVD/CNRS)Université de Perpignan Via DomitiaPerpignanFrance
- Association Charles FlahaultToulougesFrance
| | - Joris A. M. Bertrand
- Laboratoire Génome et Développement des Plantes (LGDP, UMR 5096 UPVD/CNRS)Université de Perpignan Via DomitiaPerpignanFrance
| |
Collapse
|