1
|
Hassan MJ, Najeeb A, Zhou M, Raza MA, Ali U, Cheng B, Ling Y, Li Z. Diethyl aminoethyl hexanoate reprogramed accumulations of organic metabolites associated with water balance and metabolic homeostasis in white clover under drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1430752. [PMID: 39464286 PMCID: PMC11502329 DOI: 10.3389/fpls.2024.1430752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024]
Abstract
Diethyl aminoethyl hexanoate (DA-6) serving as a non-toxic and low-cost plant growth regulator is used for improving plant growth and stress tolerance, but the DA-6-mediated organic metabolites remodeling in relation to drought tolerance is not well documented in crops. The aims of the present study were to evaluate impacts of DA-6 on physiological functions including osmotic adjustment, photochemical efficiency, oxidative damage, and cell membrane stability as well as organic metabolites remodeling in white clover (Trifolium repens) leaves based on the analysis of metabolomics. Plants were foliarly treated with or without DA-6 and subsequently exposed to drought stress for 8 days. Results demonstrated that foliar application of DA-6 (1.5 mM) could significantly ameliorate drought tolerance, which was linked with better leaf water status, photosynthetic performance, and cell membrane stability as well as lower oxidative injury in leaves. Metabolic profiling of organic metabolites identified a total of 59 metabolites including 17 organic acids, 20 sugars, 12 alcohols, and 10 other metabolites. In response to drought stress, the DA-6 induced accumulations of many sugars and sugar alcohols (erythrulose, arabinose, xylose, inosose, galactose, talopyranose, fucose, erythritol, and ribitol), organic acids (propanoic acid, 2,3-dihydroxybutanoic acid, palmitic acid, linolenic acid, and galacturonic acid), and other metabolites (2-oxazoline, silane, and glycine) in white clover. These altered metabolites induced by the DA-6 could perform critical functions in maintenances of osmo-protection, osmotic adjustment, redox homeostasis, cell wall structure and membrane stability when white clover suffered from water deficit. In addition, the campesterol and stigmasterol significantly accumulated in all plants in spite of the DA-6 pretreatment under drought stress, which could be an important adaptive response to water deficit due to beneficial roles of those two metabolites in regulating cell membrane stability and antioxidant defense. Present findings provide new evidence of DA-6-regulated metabolic homeostasis contributing to drought tolerance in leguminous plants.
Collapse
Affiliation(s)
- Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Atiqa Najeeb
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Min Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Ali Raza
- Institute of Soil Fertilizer and Water Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Ummar Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Bizhen Cheng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yao Ling
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Gu Z, Hu C, Gan Y, Zhou J, Tian G, Gao L. Role of Microbes in Alleviating Crop Drought Stress: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:384. [PMID: 38337917 PMCID: PMC10857462 DOI: 10.3390/plants13030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024]
Abstract
Drought stress is an annual global phenomenon that has devastating effects on crop production, so numerous studies have been conducted to improve crop drought resistance. Plant-associated microbiota play a crucial role in crop health and growth; however, we have a limited understanding of the key processes involved in microbiome-induced crop adaptation to drought stress. In this review, we summarize the adverse effects of drought stress on crop growth in terms of germination, photosynthesis, nutrient uptake, biomass, and yield, with a focus on the response of soil microbial communities to drought stress and plant-microbe interactions under drought stress. Moreover, we review the morpho-physiological, biochemical, and molecular mechanisms underlying the mitigation effect of microbes on crop drought stress. Finally, we highlight future research directions, including the characterization of specific rhizosphere microbiome species with corresponding root exudates and the efficiency of rhizobacteria inoculants under drought conditions. Such research will advance our understanding of the complex interactions between crops and microbes and improve crop resistance to drought stress through the application of beneficial drought-adaptive microbes.
Collapse
Affiliation(s)
- Zechen Gu
- Engineering and Technical Center for Modern Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Chengji Hu
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Yuxin Gan
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Jinyan Zhou
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Guangli Tian
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Limin Gao
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, Nanjing 210014, China
| |
Collapse
|
3
|
Xing X, Cao C, Li S, Wang H, Xu Z, Qi Y, Tong F, Jiang H, Wang X. α-naphthaleneacetic acid positively regulates soybean seed germination and seedling establishment by increasing antioxidant capacity, triacylglycerol mobilization and sucrose transport under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107890. [PMID: 37454467 DOI: 10.1016/j.plaphy.2023.107890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/15/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Drought stress is an important constraint for the germination of soybean (Glycine max [L.] Merr.) seeds and seedling establishment. A pot experiment was conducted to determine the effects of priming soybean seeds with 5 μM α-naphthaleneacetic acid (NAA) and the mechanism responsible for the induced tolerance of drought stress (soil relative water content of 55%). NAA priming inhibited drought-induced oxidative damage in seeds, and further analysis indicated that it induced an early spike in hydrogen peroxide content by the upregulation of abscisic acid-dependent GmRbohC2, resulting in an enhancement of antioxidant capacity. Moreover, NAA priming also improved the hydrolysis of triacylglycerol (TAG) to sucrose in stressed cotyledons by causing a 2- to 5-fold increase in the transcript levels of GmSDP1, GmACX2, GmMFP2, GmICL, GmMLS, GmGLI1, GmPCK1, GmFBPase1, GmSPS1 and GmSPS2. Consistently, it upregulated the expression levels of GmSUT1, GmCWINV1 and GmMST2 under drought stress, thus enhancing the transport of sucrose from cotyledons to embryonic axes, providing carbon skeletons and energy for axis growth. The seed germination percentage increased by 208.1% at 21 h after sowing, and seedling establishment percentage increased by 47.8% at 14 days after sowing. Collectively, the positive effects of NAA priming on seed germination and seedling establishment can be attributed to enhanced antioxidant ability in seeds, TAG mobilization in cotyledons and sucrose transport from cotyledons to embryonic axes under drought stress.
Collapse
Affiliation(s)
- Xinghua Xing
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Chunxin Cao
- Jinhua Academy of Agricultural Sciences, Jinhua, 321017, China
| | - Simeng Li
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Haorang Wang
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Zejun Xu
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Yujun Qi
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Fei Tong
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Haidong Jiang
- Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Wang
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China.
| |
Collapse
|
4
|
Huang X, Rao G, Peng X, Xue Y, Hu H, Feng N, Zheng D. Effect of plant growth regulators DA-6 and COS on drought tolerance of pineapple through bromelain and oxidative stress. BMC PLANT BIOLOGY 2023; 23:180. [PMID: 37020215 PMCID: PMC10074694 DOI: 10.1186/s12870-023-04200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Due to global warming, drought climates frequently occur on land, and despite being drought resistant, pineapples are still subjected to varying degrees of drought stress. Plant growth regulators can regulate the stress tolerance of plants through hormonal effects. This experiment aims to investigate the regulatory effects of different plant growth regulators on Tainong- 16 and MD-2 Pineapple when subjected to drought stress. RESULTS In this experiment, we examined the regulatory effects of two different plant growth regulators, sprayed on two pineapple varieties: MD-2 Pineapple and Tainong-16. The main component of T1 was diethyl aminoethyl hexanoate (DA-6) and that of T2 is chitosan oligosaccharide (COS). An environment similar to a natural drought was simulated in the drought stress treatments. Then, pineapples at different periods were sampled and a series of indicators were measured. The experimental results showed that the drought treatments treated with T1 and T2 plant growth regulators had a decrease in malondialdehyde, an increase in bromelain and antioxidant enzyme indicators, and an increase in phenotypic and yield indicators. CONCLUSION This experiment demonstrated that DA-6 and COS can enhance the drought resistance of pineapple plants to a certain extent through bromelain and oxidative stress. Therefore, DA-6 and COS have potential applications and this experiment lays the foundation for further research.
Collapse
Affiliation(s)
- XiaoKui Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - GangShun Rao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - XiaoDu Peng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - YingBin Xue
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - HanQiao Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - NaiJie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, 518000, Guangdong, China
| | - DianFeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China.
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
5
|
Ling Y, Zhao Y, Cheng B, Tan M, Zhang Y, Li Z. Seed Priming with Chitosan Improves Germination Characteristics Associated with Alterations in Antioxidant Defense and Dehydration-Responsive Pathway in White Clover under Water Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:2015. [PMID: 35956492 PMCID: PMC9370098 DOI: 10.3390/plants11152015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Water stress decreases seed-germination characteristics and also hinders subsequent seedling establishment. Seed priming with bioactive compounds has been proven as an effective way to improve seed germination under normal and stressful conditions. However, effect and mechanism of seed priming with chitosan (CTS) on improving seed germination and seedling establishment were not well-understood under water-deficit conditions. White clover (Trifolium repens) seeds were pretreated with or without 5 mg/L CTS before being subjected to water stress induced by 18% (w/v) polyethylene glycol 6000 for 7 days of germination in a controlled growth chamber. Results showed that water stress significantly decreased germination percentage, germination vigor, germination index, seed vigor index, and seedling dry weight and also increased mean germination time and accumulation of reactive oxygen species, leading to membrane lipid peroxidation during seed germination. These symptoms could be significantly alleviated by the CTS priming through activating superoxide dismutase, catalase, and peroxidase activities. In addition, seeds pretreated with CTS exhibited significantly higher expression levels of genes encoding dehydration-responsive transcription factors (DREB2, DREB4, and DREB5) and dehydrins (Y2K, Y2SK, and SK2) than those seeds without the CTS priming. Current findings indicated that the CTS-induced tolerance to water stress could be associated with the enhancement in dehydration-responsive pathway during seed germination.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhou Li
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.Z.); (B.C.); (M.T.); (Y.Z.)
| |
Collapse
|
6
|
Hassan MJ, Qi H, Cheng B, Hussain S, Peng Y, Liu W, Feng G, Zhao J, Li Z. Enhanced Adaptability to Limited Water Supply Regulated by Diethyl Aminoethyl Hexanoate (DA-6) Associated With Lipidomic Reprogramming in Two White Clover Genotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:879331. [PMID: 35668812 PMCID: PMC9163823 DOI: 10.3389/fpls.2022.879331] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/19/2022] [Indexed: 06/04/2023]
Abstract
Membrane lipid reprogramming is one of the most important adaptive strategies in plant species under unfavorable environmental circumstances. Therefore, the present experiment was conducted to elucidate the effect of diethyl aminoethyl hexanoate (DA-6), a novel synthetic plant growth regulator, on oxidative damage, photosynthetic performance, changes in lipidomic profile, and unsaturation index of lipids in two white clover (Trifolium repens) cultivars (drought-sensitive "Ladino" and drought-resistant "Riverdel") under PEG-6000-induced water-deficit stress. Results revealed that water-deficit stress significantly enhanced oxidative damage and decreased photosynthetic functions in both cultivars. However, the damage was less in Riverdel. In addition, water-deficit stress significantly decreased the relative content of monogalactocyl-diacylglycerols (MGDG), sulfoquinovosyl-diacylglycerols (SQDG), phosphatidic acisd (PA), phosphatidyl-ethanolamines (PE), phosphatidyl-glycerols (PG), phosphatidyl-serines (PS), ceramides (Cer), hexosylmonoceramides (Hex1Cer), sphingomyelins (SM), and sphingosines (Sph) in both cultivars, but a more pronounced decline was observed in Ladino. Exogenous application of DA-6 significantly increased the relative content of digalactocyl-diacylglycerols (DGDG), monogalactocyl-diacylglycerolsabstra (MGDG), sulfoquinovosyl-diacylglycerols (SQDG), phosphatidic acids (PA), phosphatidyl-ethanolamines (PE), phosphatidyl-glycerols (PG), phosphatidyl-inositols (PI), phosphatidyl-serines (PS), ceramides (Cer), hexosylmonoceramides (Hex1Cer), neutral glycosphingolipids (CerG2GNAc1), and sphingosines (Sph) in the two cultivars under water-deficit stress. DA-6-treated Riverdel exhibited a significantly higher DGDG:MGDG ratio and relative content of sphingomyelins (SM) than untreated plants in response to water deficiency. Furthermore, the DA-6-pretreated plants increased the unsaturation index of phosphatidic acids (PA) and phosphatidylinositols (PI) in Ladino, ceramides (Cer) and hexosylmonoceramides (Hex1Cer) in Riverdel, and sulfoquinovosyl-diacylglycerols (SQDG) in both cultivars under water stress. These results suggested that DA-6 regulated drought resistance in white clover could be associated with increased lipid content and reprogramming, higher DGDG:MGDG ratio, and improved unsaturation index of lipids, contributing to enhanced membrane stability, integrity, fluidity, and downstream signaling transduction.
Collapse
Affiliation(s)
- Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hongyin Qi
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bizhen Cheng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shafiq Hussain
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wei Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Cai S, Wu L, Wang G, Liu J, Song J, Xu H, Luo J, Shen Y, Shen S. DA-6 improves sunflower seed vigor under Al 3+ stress by regulating Al 3+ balance and ethylene metabolic. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113048. [PMID: 34883324 DOI: 10.1016/j.ecoenv.2021.113048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/05/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Aluminum (Al3+) stress restricts plant seed germination and seedling growth seriously. Here, the sunflower "S175″ variety was used to explore the technique of improving seed vigor under Al3+ stress and investigate the effect of diethyl aminoethyl hexanoate (DA-6) on physiological characteristics in sunflower seeds during germination under Al3+ stress. The results showed that 3.0 mmol·L-1 Al3+ treatment significantly suppressed the sunflower seed germination and seedling growth. Al3+ stress significantly increased Al3+ content and secretion rates of citric and malic acids in sunflower seeds during germination. Besides, endogenous ethylene content was increased in Al3+-treated seeds. DA-6 serves as a positive signal to regulate the sunflower seed germination under Al3+ stress. Moreover, DA-6 enhanced the activities of malic dehydrogenase, citrate synthase, and isocitrate dehydrogenase, up-regulated the expressions of organic acid transport-related genes (ALMT and MATE), resulting in reduced accumulation of Al3+. Furthermore, exogenous DA-6 mitigated excessive accumulation of ethylene by decreasing the 1-aminocyclopropane-1-dihydrodipicolinate synthase activity and related-gene expression. However, DA-6 treatment had no effect on abscisic acid or gibberellin metabolism in sunflower seeds under Al3+ stress. These results confirmed that DA-6 application enhanced the germination capacity through induction of the synthesis and transport of malic and citric acids, and suppression of the excessive accumulation of endogenous ethylene, thus contributing to alleviate Al3+ toxicity in sunflower seeds.
Collapse
Affiliation(s)
- Shuyu Cai
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China.
| | - Liyuan Wu
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Guofu Wang
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Jianxin Liu
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Jiangping Song
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Hua Xu
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Jie Luo
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Yi Shen
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Shuyu Shen
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| |
Collapse
|