1
|
Gill HS, Conley E, Brault C, Dykes L, Wiersma JC, Frels K, Anderson JA. Association mapping and genomic prediction for processing and end-use quality traits in wheat (Triticum aestivum L.). THE PLANT GENOME 2024:e20529. [PMID: 39539031 DOI: 10.1002/tpg2.20529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
End-use and processing traits in wheat (Triticum aestivum L.) are crucial for varietal development but are often evaluated only in the advanced stages of the breeding program due to the amount of grain needed and the labor-intensive phenotyping assays. Advances in genomic resources have provided new tools to address the selection for these complex traits earlier in the breeding process. We used association mapping to identify key variants underlying various end-use quality traits and evaluate the usefulness of genomic prediction for these traits in hard red spring wheat from the Northern United States. A panel of 383 advanced breeding lines and cultivars representing the diversity of the University of Minnesota wheat breeding program was genotyped using the Illumina 90K single nucleotide polymorphism array and evaluated in multilocation trials using standard assessments of end-use quality. Sixty-three associations for grain or flour characteristics, mixograph, farinograph, and baking traits were identified. The majority of these associations were mapped in the vicinity of glutenin/gliadin or other known loci. In addition, a putative novel multi-trait association was identified on chromosome 6AL, and candidate gene analysis revealed eight genes of interest. Further, genomic prediction had a high predictive ability (PA) for mixograph and farinograph traits, with PA up to 0.62 and 0.50 in cross-validation and forward prediction, respectively. The deployment of 46 markers from GWAS to predict dough-rheology traits yielded low to moderate PA for various traits. The results of this study suggest that genomic prediction for end-use traits in early generations can be effective for mixograph and farinograph assays but not baking assays.
Collapse
Affiliation(s)
- Harsimardeep S Gill
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, USA
| | - Emily Conley
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, USA
| | - Charlotte Brault
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, USA
| | - Linda Dykes
- USDA-ARS, Edward T. Schafer Agricultural Research Center, Small Grain and Food Crops Quality Research Unit, Hard Spring and Durum Wheat Quality Laboratory, Fargo, North Dakota, USA
| | - Jochum C Wiersma
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, USA
| | - Katherine Frels
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska, USA
| | - James A Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
2
|
Tilhou NW, Bonnette J, Boe AR, Fay PA, Fritschi FB, Mitchell RB, Rouquette FM, Wu Y, Jastrow JD, Ricketts M, Maher SD, Juenger TE, Lowry DB. Genomic prediction of regional-scale performance in switchgrass (Panicum virgatum) by accounting for genotype-by-environment variation and yield surrogate traits. G3 (BETHESDA, MD.) 2024; 14:jkae159. [PMID: 39028116 PMCID: PMC11457067 DOI: 10.1093/g3journal/jkae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 01/30/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
Switchgrass is a potential crop for bioenergy or carbon capture schemes, but further yield improvements through selective breeding are needed to encourage commercialization. To identify promising switchgrass germplasm for future breeding efforts, we conducted multisite and multitrait genomic prediction with a diversity panel of 630 genotypes from 4 switchgrass subpopulations (Gulf, Midwest, Coastal, and Texas), which were measured for spaced plant biomass yield across 10 sites. Our study focused on the use of genomic prediction to share information among traits and environments. Specifically, we evaluated the predictive ability of cross-validation (CV) schemes using only genetic data and the training set (cross-validation 1: CV1), a subset of the sites (cross-validation 2: CV2), and/or with 2 yield surrogates (flowering time and fall plant height). We found that genotype-by-environment interactions were largely due to the north-south distribution of sites. The genetic correlations between the yield surrogates and the biomass yield were generally positive (mean height r = 0.85; mean flowering time r = 0.45) and did not vary due to subpopulation or growing region (North, Middle, or South). Genomic prediction models had CV predictive abilities of -0.02 for individuals using only genetic data (CV1), but 0.55, 0.69, 0.76, 0.81, and 0.84 for individuals with biomass performance data from 1, 2, 3, 4, and 5 sites included in the training data (CV2), respectively. To simulate a resource-limited breeding program, we determined the predictive ability of models provided with the following: 1 site observation of flowering time (0.39); 1 site observation of flowering time and fall height (0.51); 1 site observation of fall height (0.52); 1 site observation of biomass (0.55); and 5 site observations of biomass yield (0.84). The ability to share information at a regional scale is very encouraging, but further research is required to accurately translate spaced plant biomass to commercial-scale sward biomass performance.
Collapse
Affiliation(s)
- Neal W Tilhou
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jason Bonnette
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Arvid R Boe
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57006, USA
| | - Philip A Fay
- Grassland, Soil and Water Research Laboratory, USDA-ARS, Temple, TX 76502, USA
| | - Felix B Fritschi
- Division of Plant Science & Technology, University of Missouri, Columbia, MO 65201, USA
| | - Robert B Mitchell
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA
| | - Francis M Rouquette
- Texas A&M AgriLife Research and Extension Center, Texas A&M University, Overton, TX 75682, USA
| | - Yanqi Wu
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74075, USA
| | - Julie D Jastrow
- Environmental Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Michael Ricketts
- Environmental Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Shelley D Maher
- USDA-NRCS, E. “Kika” de la Garza Plant Materials Center, Kingsville, TX 78363, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - David B Lowry
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Great Lake Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Saludares RA, Atanda SA, Piche L, Worral H, Dariva F, McPhee K, Bandillo N. Multi-trait multi-environment genomic prediction of preliminary yield trial in pulse crop. THE PLANT GENOME 2024; 17:e20496. [PMID: 39099220 DOI: 10.1002/tpg2.20496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024]
Abstract
Phenotypic selection of complex traits such as seed yield and protein in the preliminary yield trial (PYT) is often constrained by limited seed availability, resulting in trials with few environments and minimal to no replications. Multi-trait multi-environment enabled genomic prediction (MTME-GP) offers a valuable alternative to predict missing phenotypes of selection candidates for multiple traits and diverse environments. In this study, we assessed the efficiency of MTME-GP for improving seed protein and seed yield in field pea, the top two breeding targets but highly antagonistic traits in pulse crop. We utilized a set of 300 selection candidates in the PYT that virtually represented all possible families of the North Dakota State University field pea breeding program. Selection candidates were evaluated in three diverse, contrasting environments, as indicated by a range of heritability. Using whole- and split-environment cross validation schemes, MTME-GP had higher predictive ability than a standard additive G-BLUP model. Integrating a range of overlapping genotypes in between environments showed improvement on the predictive ability of the MTME-GP model but tends to plateau at 50%-80% training set size. Regardless of the cross-validation scheme, accuracy was among the lowest in stressed environments, presumably due to low heritability for seed protein and yield. This study provided insights into the potential of MTME-GP in a public pulse crop breeding program. The MTME-GP framework can be further improved with more testing environments and integration of additional orthogonal information in the early stages of the breeding pipeline.
Collapse
Affiliation(s)
- Rica Amor Saludares
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Sikiru Adeniyi Atanda
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Lisa Piche
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Hannah Worral
- North Central Research Extension Center, Minot, North Dakota, USA
| | - Francoise Dariva
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Kevin McPhee
- Department of Plant Science and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Nonoy Bandillo
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
4
|
Thapa S, Gill HS, Halder J, Rana A, Ali S, Maimaitijiang M, Gill U, Bernardo A, St Amand P, Bai G, Sehgal SK. Integrating genomics, phenomics, and deep learning improves the predictive ability for Fusarium head blight-related traits in winter wheat. THE PLANT GENOME 2024; 17:e20470. [PMID: 38853339 DOI: 10.1002/tpg2.20470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 06/11/2024]
Abstract
Fusarium head blight (FHB) remains one of the most destructive diseases of wheat (Triticum aestivum L.), causing considerable losses in yield and end-use quality. Phenotyping of FHB resistance traits, Fusarium-damaged kernels (FDK), and deoxynivalenol (DON), is either prone to human biases or resource expensive, hindering the progress in breeding for FHB-resistant cultivars. Though genomic selection (GS) can be an effective way to select these traits, inaccurate phenotyping remains a hurdle in exploiting this approach. Here, we used an artificial intelligence (AI)-based precise FDK estimation that exhibits high heritability and correlation with DON. Further, GS using AI-based FDK (FDK_QVIS/FDK_QNIR) showed a two-fold increase in predictive ability (PA) compared to GS for traditionally estimated FDK (FDK_V). Next, the AI-based FDK was evaluated along with other traits in multi-trait (MT) GS models to predict DON. The inclusion of FDK_QNIR and FDK_QVIS with days to heading as covariates improved the PA for DON by 58% over the baseline single-trait GS model. We next used hyperspectral imaging of FHB-infected wheat kernels as a novel avenue to improve the MT GS for DON. The PA for DON using selected wavebands derived from hyperspectral imaging in MT GS models surpassed the single-trait GS model by around 40%. Finally, we evaluated phenomic prediction for DON by integrating hyperspectral imaging with deep learning to directly predict DON in FHB-infected wheat kernels and observed an accuracy (R2 = 0.45) comparable to best-performing MT GS models. This study demonstrates the potential application of AI and vision-based platforms to improve PA for FHB-related traits using genomic and phenomic selection.
Collapse
Affiliation(s)
- Subash Thapa
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, South Dakota, USA
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, South Dakota, USA
| | - Jyotirmoy Halder
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, South Dakota, USA
| | - Anshul Rana
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, South Dakota, USA
| | - Shaukat Ali
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, South Dakota, USA
| | - Maitiniyazi Maimaitijiang
- Department of Geography & Geospatial Sciences, Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, South Dakota, USA
| | - Upinder Gill
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, USA
| | - Amy Bernardo
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas, USA
| | - Paul St Amand
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas, USA
| | - Guihua Bai
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
5
|
Mulugeta T, Abate A, Tadesse W, Bezabih Woldeyohannes A, Tefera N, Shiferaw W, Tiruneh A. Multivariate analysis of phenotypic diversity elite bread wheat ( Triticum aestivum L.) genotypes from ICARDA in Ethiopia. Heliyon 2024; 10:e36062. [PMID: 39229510 PMCID: PMC11369510 DOI: 10.1016/j.heliyon.2024.e36062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024] Open
Abstract
Wheat is an important crop for food security, providing a source of protein and energy for the growing population in Ethiopia. However, both biotic and abiotic factors limit national wheat productivity. The availability of genetically diverse wheat genotypes is crucial for developing new wheat varieties that are both high-yielding and resilient to stress. Therefore, this field trial aimed to assess phenotypic variation and relationship among ICARDA-derived bread wheat genotypes using multivariate analysis techniques. The trial was conducted at three locations: Enewari, Wogere, and Kulumsa using an alpha lattice design with two replications during the main cropping seasons of 2022 and 2023. Phenotypic data on eight agronomic traits and the severity of yellow rust were collected and R programming was used for data analysis. Individual and combined location data analysis of variance showed significant differences (p ≤ 0.05) among genotypes for most of the studied traits. The highest heritability and genetic advance as a percentage of the mean were observed in days to heading (90.8, 21.29), plant height (72.4, 28.6), seeds per spike (61.7, 28), thousand kernel weight (61.9, 12), and area under the disease progress curve (67, 39.8), suggesting a predominance of additive gene action. Grain yield showed a strong positive correlation with days to maturity, plant height, spike length, spikelet per spike, and thousand kernel weight for each location. Dendrogram and phylogenetic tree methods were used to group genotypes into four genetically distinct clusters. Cluster II and III had the greatest inter-cluster distance, indicating higher diversity among their genotypes. This study identified new candidate genotypes with superior agronomic performance, high grain yield traits, and robust resistance to yellow rust, making them valuable for both current and future wheat breeding programs. Additionally, the comprehensive dataset produced in this study could facilitate the identification of genetic variations influencing desirable traits through genome-wide association analysis.
Collapse
Affiliation(s)
- Tesfaye Mulugeta
- Plant Breeding Department, Debre Birhan Agricultural Research Center, Debre Birhan, Ethiopia
| | - Alemu Abate
- Department of Plant Sciences, Bahirdar University, Bahirdar, Ethiopia
| | - Wuletaw Tadesse
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | | | - Neway Tefera
- Plant Breeding Department, Debre Birhan Agricultural Research Center, Debre Birhan, Ethiopia
| | - Wondwosen Shiferaw
- Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
| | - Altaye Tiruneh
- Plant Breeding Department, Debre Birhan Agricultural Research Center, Debre Birhan, Ethiopia
| |
Collapse
|
6
|
Montesinos-López OA, Herr AW, Crossa J, Montesinos-López A, Carter AH. Enhancing winter wheat prediction with genomics, phenomics and environmental data. BMC Genomics 2024; 25:544. [PMID: 38822262 PMCID: PMC11143639 DOI: 10.1186/s12864-024-10438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
In the realm of multi-environment prediction, when the goal is to predict a complete environment using the others as a training set, the efficiency of genomic selection (GS) falls short of expectations. Genotype by environment interaction poses a challenge in achieving high prediction accuracies. Consequently, current efforts are focused on enhancing efficiency by integrating various types of inputs, such as phenomics data, environmental information, and other omics data. In this study, we sought to evaluate the impact of incorporating environmental information into the modeling process, in addition to genomic and phenomics information. Our evaluation encompassed five data sets of soft white winter wheat, and the results revealed a significant improvement in prediction accuracy, as measured by the normalized root mean square error (NRMSE), through the integration of environmental information. Notably, there was an average gain in prediction accuracy of 49.19% in terms of NRMSE across the data sets. Moreover, the observed prediction accuracy ranged from 5.68% (data set 3) to 60.36% (data set 4), underscoring the substantial effect of integrating environmental information. By including genomic, phenomic, and environmental data in prediction models, plant breeding programs can improve selection efficiency across locations.
Collapse
Affiliation(s)
| | - Andrew W Herr
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México- Veracruz, Edo. de México, CP 52640, México
- Universidad de Guadalajara, Montecillos, Edo. de México, CP 56230, México
| | | | - Arron H Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
7
|
Kaushal S, Gill HS, Billah MM, Khan SN, Halder J, Bernardo A, Amand PS, Bai G, Glover K, Maimaitijiang M, Sehgal SK. Enhancing the potential of phenomic and genomic prediction in winter wheat breeding using high-throughput phenotyping and deep learning. FRONTIERS IN PLANT SCIENCE 2024; 15:1410249. [PMID: 38872880 PMCID: PMC11169824 DOI: 10.3389/fpls.2024.1410249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024]
Abstract
Integrating high-throughput phenotyping (HTP) based traits into phenomic and genomic selection (GS) can accelerate the breeding of high-yielding and climate-resilient wheat cultivars. In this study, we explored the applicability of Unmanned Aerial Vehicles (UAV)-assisted HTP combined with deep learning (DL) for the phenomic or multi-trait (MT) genomic prediction of grain yield (GY), test weight (TW), and grain protein content (GPC) in winter wheat. Significant correlations were observed between agronomic traits and HTP-based traits across different growth stages of winter wheat. Using a deep neural network (DNN) model, HTP-based phenomic predictions showed robust prediction accuracies for GY, TW, and GPC for a single location with R2 of 0.71, 0.62, and 0.49, respectively. Further prediction accuracies increased (R2 of 0.76, 0.64, and 0.75) for GY, TW, and GPC, respectively when advanced breeding lines from multi-locations were used in the DNN model. Prediction accuracies for GY varied across growth stages, with the highest accuracy at the Feekes 11 (Milky ripe) stage. Furthermore, forward prediction of GY in preliminary breeding lines using DNN trained on multi-location data from advanced breeding lines improved the prediction accuracy by 32% compared to single-location data. Next, we evaluated the potential of incorporating HTP-based traits in multi-trait genomic selection (MT-GS) models in the prediction of GY, TW, and GPC. MT-GS, models including UAV data-based anthocyanin reflectance index (ARI), green chlorophyll index (GCI), and ratio vegetation index 2 (RVI_2) as covariates demonstrated higher predictive ability (0.40, 0.40, and 0.37, respectively) as compared to single-trait model (0.23) for GY. Overall, this study demonstrates the potential of integrating HTP traits into DL-based phenomic or MT-GS models for enhancing breeding efficiency.
Collapse
Affiliation(s)
- Swas Kaushal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Harsimardeep S. Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Mohammad Maruf Billah
- Department of Geography and Geospatial Sciences, Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD, United States
| | - Shahid Nawaz Khan
- Department of Geography and Geospatial Sciences, Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD, United States
| | - Jyotirmoy Halder
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Amy Bernardo
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, United States
| | - Paul St. Amand
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, United States
| | - Guihua Bai
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, United States
| | - Karl Glover
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Maitiniyazi Maimaitijiang
- Department of Geography and Geospatial Sciences, Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD, United States
| | - Sunish K. Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
8
|
Alemu A, Åstrand J, Montesinos-López OA, Isidro Y Sánchez J, Fernández-Gónzalez J, Tadesse W, Vetukuri RR, Carlsson AS, Ceplitis A, Crossa J, Ortiz R, Chawade A. Genomic selection in plant breeding: Key factors shaping two decades of progress. MOLECULAR PLANT 2024; 17:552-578. [PMID: 38475993 DOI: 10.1016/j.molp.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Genomic selection, the application of genomic prediction (GP) models to select candidate individuals, has significantly advanced in the past two decades, effectively accelerating genetic gains in plant breeding. This article provides a holistic overview of key factors that have influenced GP in plant breeding during this period. We delved into the pivotal roles of training population size and genetic diversity, and their relationship with the breeding population, in determining GP accuracy. Special emphasis was placed on optimizing training population size. We explored its benefits and the associated diminishing returns beyond an optimum size. This was done while considering the balance between resource allocation and maximizing prediction accuracy through current optimization algorithms. The density and distribution of single-nucleotide polymorphisms, level of linkage disequilibrium, genetic complexity, trait heritability, statistical machine-learning methods, and non-additive effects are the other vital factors. Using wheat, maize, and potato as examples, we summarize the effect of these factors on the accuracy of GP for various traits. The search for high accuracy in GP-theoretically reaching one when using the Pearson's correlation as a metric-is an active research area as yet far from optimal for various traits. We hypothesize that with ultra-high sizes of genotypic and phenotypic datasets, effective training population optimization methods and support from other omics approaches (transcriptomics, metabolomics and proteomics) coupled with deep-learning algorithms could overcome the boundaries of current limitations to achieve the highest possible prediction accuracy, making genomic selection an effective tool in plant breeding.
Collapse
Affiliation(s)
- Admas Alemu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Johanna Åstrand
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden; Lantmännen Lantbruk, Svalöv, Sweden
| | | | - Julio Isidro Y Sánchez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Madrid, Spain
| | - Javier Fernández-Gónzalez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Madrid, Spain
| | - Wuletaw Tadesse
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Anders S Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, Texcoco, México 52640, Mexico
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
9
|
Gill HS, Brar N, Halder J, Hall C, Seabourn BW, Chen YR, St Amand P, Bernardo A, Bai G, Glover K, Turnipseed B, Sehgal SK. Multi-trait genomic selection improves the prediction accuracy of end-use quality traits in hard winter wheat. THE PLANT GENOME 2023; 16:e20331. [PMID: 37194433 DOI: 10.1002/tpg2.20331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 05/18/2023]
Abstract
Improvement of end-use quality remains one of the most important goals in hard winter wheat (HWW) breeding. Nevertheless, the evaluation of end-use quality traits is confined to later development generations owing to resource-intensive phenotyping. Genomic selection (GS) has shown promise in facilitating selection for end-use quality; however, lower prediction accuracy (PA) for complex traits remains a challenge in GS implementation. Multi-trait genomic prediction (MTGP) models can improve PA for complex traits by incorporating information on correlated secondary traits, but these models remain to be optimized in HWW. A set of advanced breeding lines from 2015 to 2021 were genotyped with 8725 single-nucleotide polymorphisms and was used to evaluate MTGP to predict various end-use quality traits that are otherwise difficult to phenotype in earlier generations. The MTGP model outperformed the ST model with up to a twofold increase in PA. For instance, PA was improved from 0.38 to 0.75 for bake absorption and from 0.32 to 0.52 for loaf volume. Further, we compared MTGP models by including different combinations of easy-to-score traits as covariates to predict end-use quality traits. Incorporation of simple traits, such as flour protein (FLRPRO) and sedimentation weight value (FLRSDS), substantially improved the PA of MT models. Thus, the rapid low-cost measurement of traits like FLRPRO and FLRSDS can facilitate the use of GP to predict mixograph and baking traits in earlier generations and provide breeders an opportunity for selection on end-use quality traits by culling inferior lines to increase selection accuracy and genetic gains.
Collapse
Affiliation(s)
- Harsimardeep S Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, South Dakota, USA
| | - Navreet Brar
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, South Dakota, USA
| | - Jyotirmoy Halder
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, South Dakota, USA
| | - Cody Hall
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, South Dakota, USA
| | - Bradford W Seabourn
- USDA-ARS, CGAHR, Hard Winter Wheat Quality Laboratory, Manhattan, Kansas, USA
| | - Yuanhong R Chen
- USDA-ARS, CGAHR, Hard Winter Wheat Quality Laboratory, Manhattan, Kansas, USA
| | - Paul St Amand
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas, USA
| | - Amy Bernardo
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas, USA
| | - Guihua Bai
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas, USA
| | - Karl Glover
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, South Dakota, USA
| | - Brent Turnipseed
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, South Dakota, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
10
|
Mora-Poblete F, Maldonado C, Henrique L, Uhdre R, Scapim CA, Mangolim CA. Multi-trait and multi-environment genomic prediction for flowering traits in maize: a deep learning approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1153040. [PMID: 37593046 PMCID: PMC10428628 DOI: 10.3389/fpls.2023.1153040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
Maize (Zea mays L.), the third most widely cultivated cereal crop in the world, plays a critical role in global food security. To improve the efficiency of selecting superior genotypes in breeding programs, researchers have aimed to identify key genomic regions that impact agronomic traits. In this study, the performance of multi-trait, multi-environment deep learning models was compared to that of Bayesian models (Markov Chain Monte Carlo generalized linear mixed models (MCMCglmm), Bayesian Genomic Genotype-Environment Interaction (BGGE), and Bayesian Multi-Trait and Multi-Environment (BMTME)) in terms of the prediction accuracy of flowering-related traits (Anthesis-Silking Interval: ASI, Female Flowering: FF, and Male Flowering: MF). A tropical maize panel of 258 inbred lines from Brazil was evaluated in three sites (Cambira-2018, Sabaudia-2018, and Iguatemi-2020 and 2021) using approximately 290,000 single nucleotide polymorphisms (SNPs). The results demonstrated a 14.4% increase in prediction accuracy when employing multi-trait models compared to the use of a single trait in a single environment approach. The accuracy of predictions also improved by 6.4% when using a single trait in a multi-environment scheme compared to using multi-trait analysis. Additionally, deep learning models consistently outperformed Bayesian models in both single and multiple trait and environment approaches. A complementary genome-wide association study identified associations with 26 candidate genes related to flowering time traits, and 31 marker-trait associations were identified, accounting for 37%, 37%, and 22% of the phenotypic variation of ASI, FF and MF, respectively. In conclusion, our findings suggest that deep learning models have the potential to significantly improve the accuracy of predictions, regardless of the approach used and provide support for the efficacy of this method in genomic selection for flowering-related traits in tropical maize.
Collapse
Affiliation(s)
| | - Carlos Maldonado
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Luma Henrique
- Department of Agronomy, State University of Maringá, Paraná, Brazil
| | - Renan Uhdre
- Department of Agronomy, State University of Maringá, Paraná, Brazil
| | | | | |
Collapse
|
11
|
Zhao H, Lin Z, Khansefid M, Tibbits JF, Hayden MJ. Genomic prediction and selection response for grain yield in safflower. Front Genet 2023; 14:1129433. [PMID: 37051598 PMCID: PMC10083426 DOI: 10.3389/fgene.2023.1129433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
In plant breeding programs, multiple traits are recorded in each trial, and the traits are often correlated. Correlated traits can be incorporated into genomic selection models, especially for traits with low heritability, to improve prediction accuracy. In this study, we investigated the genetic correlation between important agronomic traits in safflower. We observed the moderate genetic correlations between grain yield (GY) and plant height (PH, 0.272-0.531), and low correlations between grain yield and days to flowering (DF, -0.157-0.201). A 4%-20% prediction accuracy improvement for grain yield was achieved when plant height was included in both training and validation sets with multivariate models. We further explored the selection responses for grain yield by selecting the top 20% of lines based on different selection indices. Selection responses for grain yield varied across sites. Simultaneous selection for grain yield and seed oil content (OL) showed positive gains across all sites with equal weights for both grain yield and oil content. Combining g×E interaction into genomic selection (GS) led to more balanced selection responses across sites. In conclusion, genomic selection is a valuable breeding tool for breeding high grain yield, oil content, and highly adaptable safflower varieties.
Collapse
Affiliation(s)
- Huanhuan Zhao
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Zibei Lin
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Majid Khansefid
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Josquin F. Tibbits
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Matthew J. Hayden
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| |
Collapse
|
12
|
Kumar M, Kumar S, Sandhu KS, Kumar N, Saripalli G, Prakash R, Nambardar A, Sharma H, Gautam T, Balyan HS, Gupta PK. GWAS and genomic prediction for pre-harvest sprouting tolerance involving sprouting score and two other related traits in spring wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:14. [PMID: 37313293 PMCID: PMC10248620 DOI: 10.1007/s11032-023-01357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/26/2023] [Indexed: 06/15/2023]
Abstract
In wheat, a genome-wide association study (GWAS) and genomic prediction (GP) analysis were conducted for pre-harvest sprouting (PHS) tolerance and two of its related traits. For this purpose, an association panel of 190 accessions was phenotyped for PHS (using sprouting score), falling number, and grain color over two years and genotyped with 9904 DArTseq based SNP markers. GWAS for main-effect quantitative trait nucleotides (M-QTNs) using three different models (CMLM, SUPER, and FarmCPU) and epistatic QTNs (E-QTNs) using PLINK were performed. A total of 171 M-QTNs (CMLM, 47; SUPER, 70; FarmCPU, 54) for all three traits, and 15 E-QTNs involved in 20 first-order epistatic interactions were identified. Some of the above QTNs overlapped the previously reported QTLs, MTAs, and cloned genes, allowing delineating 26 PHS-responsive genomic regions that spread over 16 wheat chromosomes. As many as 20 definitive and stable QTNs were considered important for use in marker-assisted recurrent selection (MARS). The gene, TaPHS1, for PHS tolerance (PHST) associated with one of the QTNs was also validated using the KASP assay. Some of the M-QTNs were shown to have a key role in the abscisic acid pathway involved in PHST. Genomic prediction accuracies (based on the cross-validation approach) using three different models ranged from 0.41 to 0.55, which are comparable to the results of previous studies. In summary, the results of the present study improved our understanding of the genetic architecture of PHST and its related traits in wheat and provided novel genomic resources for wheat breeding based on MARS and GP. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01357-5.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | | | - Neeraj Kumar
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC USA
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD USA
| | - Ram Prakash
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | - Akash Nambardar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | - Hemant Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| |
Collapse
|
13
|
Kaur S, Gill HS, Breiland M, Kolmer JA, Gupta R, Sehgal SK, Gill U. Identification of leaf rust resistance loci in a geographically diverse panel of wheat using genome-wide association analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1090163. [PMID: 36818858 PMCID: PMC9929074 DOI: 10.3389/fpls.2023.1090163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Leaf rust, caused by Puccinia triticina (Pt) is among the most devastating diseases posing a significant threat to global wheat production. The continuously evolving virulent Pt races in North America calls for exploring new sources of leaf rust resistance. A diversity panel of 365 bread wheat accessions selected from a worldwide population of landraces and cultivars was evaluated at the seedling stage against four Pt races (TDBJQ, TBBGS, MNPSD and, TNBJS). A wide distribution of seedling responses against the four Pt races was observed. Majority of the genotypes displayed a susceptible response with only 28 (9.8%), 59 (13.5%), 45 (12.5%), and 29 (8.1%) wheat accessions exhibiting a highly resistant response to TDBJQ, TBBGS, MNPSD and, TNBJS, respectively. Further, we conducted a high-resolution multi-locus genome-wide association study (GWAS) using a set of 302,524 high-quality single nucleotide polymorphisms (SNPs). The GWAS analysis identified 27 marker-trait associations (MTAs) for leaf rust resistance on different wheat chromosomes of which 20 MTAs were found in the vicinity of known Lr genes, MTAs, or quantitative traits loci (QTLs) identified in previous studies. The remaining seven significant MTAs identified represent genomic regions that harbor potentially novel genes for leaf rust resistance. Furthermore, the candidate gene analysis for the significant MTAs identified various genes of interest that may be involved in disease resistance. The identified resistant lines and SNPs linked to the QTLs in this study will serve as valuable resources in wheat rust resistance breeding programs.
Collapse
Affiliation(s)
- Shivreet Kaur
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Harsimardeep S. Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Matthew Breiland
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - James A. Kolmer
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), St. Paul, MN, United States
| | - Rajeev Gupta
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Fargo, ND, United States
| | - Sunish K. Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Upinder Gill
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
14
|
Subedi M, Ghimire B, Bagwell JW, Buck JW, Mergoum M. Wheat end-use quality: State of art, genetics, genomics-assisted improvement, future challenges, and opportunities. Front Genet 2023; 13:1032601. [PMID: 36685944 PMCID: PMC9849398 DOI: 10.3389/fgene.2022.1032601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Wheat is the most important source of food, feed, and nutrition for humans and livestock around the world. The expanding population has increasing demands for various wheat products with different quality attributes requiring the development of wheat cultivars that fulfills specific demands of end-users including millers and bakers in the international market. Therefore, wheat breeding programs continually strive to meet these quality standards by screening their improved breeding lines every year. However, the direct measurement of various end-use quality traits such as milling and baking qualities requires a large quantity of grain, traits-specific expensive instruments, time, and an expert workforce which limits the screening process. With the advancement of sequencing technologies, the study of the entire plant genome is possible, and genetic mapping techniques such as quantitative trait locus mapping and genome-wide association studies have enabled researchers to identify loci/genes associated with various end-use quality traits in wheat. Modern breeding techniques such as marker-assisted selection and genomic selection allow the utilization of these genomic resources for the prediction of quality attributes with high accuracy and efficiency which speeds up crop improvement and cultivar development endeavors. In addition, the candidate gene approach through functional as well as comparative genomics has facilitated the translation of the genomic information from several crop species including wild relatives to wheat. This review discusses the various end-use quality traits of wheat, their genetic control mechanisms, the use of genetics and genomics approaches for their improvement, and future challenges and opportunities for wheat breeding.
Collapse
Affiliation(s)
- Madhav Subedi
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin Campus, Griffin, GA, United States
| | - Bikash Ghimire
- Department of Plant Pathology, University of Georgia, Griffin Campus, Griffin, GA, United States
| | - John White Bagwell
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin Campus, Griffin, GA, United States
| | - James W. Buck
- Department of Plant Pathology, University of Georgia, Griffin Campus, Griffin, GA, United States
| | - Mohamed Mergoum
- Department of Crop and Soil Sciences, University of Georgia, Griffin Campus, Griffin, GA, United States
| |
Collapse
|
15
|
Atanda SA, Steffes J, Lan Y, Al Bari MA, Kim JH, Morales M, Johnson JP, Saludares R, Worral H, Piche L, Ross A, Grusak M, Coyne C, McGee R, Rao J, Bandillo N. Multi-trait genomic prediction improves selection accuracy for enhancing seed mineral concentrations in pea. THE PLANT GENOME 2022; 15:e20260. [PMID: 36193571 DOI: 10.1002/tpg2.20260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
Multi-trait genomic selection (MT-GS) has the potential to improve predictive ability by maximizing the use of information across related genotypes and genetically correlated traits. In this study, we extended the use of sparse phenotyping method into the MT-GS framework by split testing of entries to maximize borrowing of information across genotypes and predict missing phenotypes for targeted traits without additional phenotyping expenditure. Using 300 advanced breeding lines from North Dakota State University (NDSU) pulse breeding program and ∼200 USDA accessions that were evaluated for 10 nutritional traits, our results show that the proposed sparse phenotyping aided MT-GS can further improve predictive ability by >12% across traits compared with univariate (UNI) genomic selection. The proposed strategy departed from the previous reports that weak genetic correlation is a limitation to the advantage of MT-GS over UNI genomic selection, which was evident in the partially balanced phenotyping-enabled MT-GS. Our results point to heritability and genetic correlation between traits as possible metrics to optimize and further improve the estimation of model parameters, and ultimately, prediction performance. Overall, our study offers a new approach to optimize the prediction performance using the MT-GS and further highlight strategy to maximize the efficiency of GS in a plant breeding program. The sparse-testing-aided MT-GS proposed in this study can be further extended to multi-environment, multi-trait GS to improve prediction performance and further reduce the cost of phenotyping and time-consuming data collection process.
Collapse
Affiliation(s)
| | - Jenna Steffes
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 58108-6050, USA
| | - Yang Lan
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 58108-6050, USA
| | - Md Abdullah Al Bari
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 58108-6050, USA
| | - Jeong-Hwa Kim
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 58108-6050, USA
| | - Mario Morales
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 58108-6050, USA
| | - Josephine P Johnson
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 58108-6050, USA
| | - Rica Saludares
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 58108-6050, USA
| | - Hannah Worral
- North Central Research Extension Center, NDSU, 5400 Hwy. 83, South Minot, ND, 58701, USA
| | - Lisa Piche
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 58108-6050, USA
| | - Andrew Ross
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 58108-6050, USA
| | - Mike Grusak
- Edward T. Schafer Agricultural Research Center, USDA-ARS, 1616 Albrecht Blvd. N, Fargo, ND, 58102-2765, USA
| | - Clarice Coyne
- USDA-ARS Plant Germplasm Introduction and Testing, Washington State Univ., Pullman, WA, 99164, USA
| | - Rebecca McGee
- USDA-ARS, Grain Legume Genetics and Physiology Research, Pullman, WA, 99164, USA
- Dep. of Horticulture, Washington State Univ., Pullman, WA, 99164, USA
| | - Jiajia Rao
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 58108-6050, USA
| | - Nonoy Bandillo
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 58108-6050, USA
| |
Collapse
|
16
|
Ballén-Taborda C, Lyerly J, Smith J, Howell K, Brown-Guedira G, Babar MA, Harrison SA, Mason RE, Mergoum M, Murphy JP, Sutton R, Griffey CA, Boyles RE. Utilizing genomics and historical data to optimize gene pools for new breeding programs: A case study in winter wheat. Front Genet 2022; 13:964684. [PMID: 36276956 PMCID: PMC9585219 DOI: 10.3389/fgene.2022.964684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
With the rapid generation and preservation of both genomic and phenotypic information for many genotypes within crops and across locations, emerging breeding programs have a valuable opportunity to leverage these resources to 1) establish the most appropriate genetic foundation at program inception and 2) implement robust genomic prediction platforms that can effectively select future breeding lines. Integrating genomics-enabled1 breeding into cultivar development can save costs and allow resources to be reallocated towards advanced (i.e., later) stages of field evaluation, which can facilitate an increased number of testing locations and replicates within locations. In this context, a reestablished winter wheat breeding program was used as a case study to understand best practices to leverage and tailor existing genomic and phenotypic resources to determine optimal genetics for a specific target population of environments. First, historical multi-environment phenotype data, representing 1,285 advanced breeding lines, were compiled from multi-institutional testing as part of the SunGrains cooperative and used to produce GGE biplots and PCA for yield. Locations were clustered based on highly correlated line performance among the target population of environments into 22 subsets. For each of the subsets generated, EMMs and BLUPs were calculated using linear models with the ‘lme4’ R package. Second, for each subset, TPs representative of the new SC breeding lines were determined based on genetic relatedness using the ‘STPGA’ R package. Third, for each TP, phenotypic values and SNP data were incorporated into the ‘rrBLUP’ mixed models for generation of GEBVs of YLD, TW, HD and PH. Using a five-fold cross-validation strategy, an average accuracy of r = 0.42 was obtained for yield between all TPs. The validation performed with 58 SC elite breeding lines resulted in an accuracy of r = 0.62 when the TP included complete historical data. Lastly, QTL-by-environment interaction for 18 major effect genes across three geographic regions was examined. Lines harboring major QTL in the absence of disease could potentially underperform (e.g., Fhb1 R-gene), whereas it is advantageous to express a major QTL under biotic pressure (e.g., stripe rust R-gene). This study highlights the importance of genomics-enabled breeding and multi-institutional partnerships to accelerate cultivar development.
Collapse
Affiliation(s)
- Carolina Ballén-Taborda
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
- Pee Dee Research and Education Center, Clemson University, Florence, SC, United States
| | - Jeanette Lyerly
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, United States
| | - Jared Smith
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Raleigh, NC, United States
| | - Kimberly Howell
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Raleigh, NC, United States
| | - Gina Brown-Guedira
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, United States
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Raleigh, NC, United States
| | - Md. Ali Babar
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Stephen A. Harrison
- School of Plant, Environmental and Soil Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Richard E. Mason
- College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Mohamed Mergoum
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| | - J. Paul Murphy
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, United States
| | - Russell Sutton
- Department of Soil and Crop Sciences, Texas A&M University, Commerce, TX, United States
| | - Carl A. Griffey
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Richard E. Boyles
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
- Pee Dee Research and Education Center, Clemson University, Florence, SC, United States
- *Correspondence: Richard E. Boyles,
| |
Collapse
|
17
|
Tanin MJ, Sharma A, Saini DK, Singh S, Kashyap L, Srivastava P, Mavi GS, Kaur S, Kumar V, Kumar V, Grover G, Chhuneja P, Sohu VS. Ascertaining yield and grain protein content stability in wheat genotypes having the Gpc-B1 gene using univariate, multivariate, and correlation analysis. Front Genet 2022; 13:1001904. [PMID: 36160017 PMCID: PMC9490372 DOI: 10.3389/fgene.2022.1001904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The high performance and stability of wheat genotypes for yield, grain protein content (GPC), and other desirable traits are critical for varietal development and food and nutritional security. Likewise, the genotype by environment (G × E) interaction (GEI) should be thoroughly investigated and favorably utilized whenever genotype selection decisions are made. The present study was planned with the following two major objectives: 1) determination of GEI for some advanced wheat genotypes across four locations (Ludhiana, Ballowal, Patiala, and Bathinda) of Punjab, India; and 2) selection of the best genotypes with high GPC and yield in various environments. Different univariate [Eberhart and Ruessll's models; Perkins and Jinks' models; Wrike's Ecovalence; and Francis and Kannenberg's models], multivariate (AMMI and GGE biplot), and correlation analyses were used to interpret the data from the multi-environmental trial (MET). Consequently, both the univariate and multivariate analyses provided almost similar results regarding the top-performing and stable genotypes. The analysis of variance revealed that variation due to environment, genotype, and GEI was highly significant at the 0.01 and 0.001 levels of significance for all studied traits. The days to flowering, plant height, spikelets per spike, grain per spike, days to maturity, and 1000-grain weight were specifically affected by the environment, whereas yield was mainly affected by the environment and GEI. Genotypes, on the other hand, had a greater impact on the GPC than environmental conditions. As a result, a multi-environmental investigation was necessary to identify the GEI for wheat genotype selection because the GEI was very significant for all of the evaluated traits. Yield, 1000-grain weight, spikelet per spike, and days to maturity were observed to have positive correlations, implying the feasibility of their simultaneous selection for yield enhancement. However, GPC was observed to have a negative correlation with yield. Patiala was found to be the most discriminating environment for both yield and GPC and also the most effective representative environment for GPC, whereas Ludhiana was found to be the most effective representative environment for yield. Eventually, two NILs (BWL7508, and BWL7511) were selected as the top across all environments for both yield and GPC.
Collapse
Affiliation(s)
- Mohammad Jafar Tanin
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Satinder Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Lenika Kashyap
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - G. S. Mavi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Vijay Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Vineet Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Gomti Grover
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - V. S. Sohu
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
18
|
Gill HS, Halder J, Zhang J, Rana A, Kleinjan J, Amand PS, Bernardo A, Bai G, Sehgal SK. Whole-genome analysis of hard winter wheat germplasm identifies genomic regions associated with spike and kernel traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2953-2967. [PMID: 35939073 DOI: 10.1007/s00122-022-04160-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Genetic dissection of yield component traits including spike and kernel characteristics is essential for the continuous improvement in wheat yield. Genome-wide association studies (GWAS) have been frequently used to identify genetic determinants for spike and kernel-related traits in wheat, though none have been employed in hard winter wheat (HWW) which represents a major class in US wheat acreage. Further, most of these studies relied on assembled diversity panels instead of adapted breeding lines, limiting the transferability of results to practical wheat breeding. Here we assembled a population of advanced/elite breeding lines and well-adapted cultivars and evaluated over four environments for phenotypic analysis of spike and kernel traits. GWAS identified 17 significant multi-environment marker-trait associations (MTAs) for various traits, representing 12 putative quantitative trait loci (QTLs), with five QTLs affecting multiple traits. Four of these QTLs mapped on three chromosomes 1A, 5B, and 7A for spike length, number of spikelets per spike (NSPS), and kernel length are likely novel. Further, a highly significant QTL was detected on chromosome 7AS that has not been previously associated with NSPS and putative candidate genes were identified in this region. The allelic frequencies of important quantitative trait nucleotides (QTNs) were deduced in a larger set of 1,124 accessions which revealed the importance of identified MTAs in the US HWW breeding programs. The results from this study could be directly used by the breeders to select the lines with favorable alleles for making crosses, and reported markers will facilitate marker-assisted selection of stable QTLs for yield components in wheat breeding.
Collapse
Affiliation(s)
- Harsimardeep S Gill
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jyotirmoy Halder
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jinfeng Zhang
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Anshul Rana
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jonathan Kleinjan
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Paul St Amand
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Amy Bernardo
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Guihua Bai
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
19
|
Tanin MJ, Saini DK, Sandhu KS, Pal N, Gudi S, Chaudhary J, Sharma A. Consensus genomic regions associated with multiple abiotic stress tolerance in wheat and implications for wheat breeding. Sci Rep 2022; 12:13680. [PMID: 35953529 PMCID: PMC9372038 DOI: 10.1038/s41598-022-18149-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
In wheat, a meta-analysis was performed using previously identified QTLs associated with drought stress (DS), heat stress (HS), salinity stress (SS), water-logging stress (WS), pre-harvest sprouting (PHS), and aluminium stress (AS) which predicted a total of 134 meta-QTLs (MQTLs) that involved at least 28 consistent and stable MQTLs conferring tolerance to five or all six abiotic stresses under study. Seventy-six MQTLs out of the 132 physically anchored MQTLs were also verified with genome-wide association studies. Around 43% of MQTLs had genetic and physical confidence intervals of less than 1 cM and 5 Mb, respectively. Consequently, 539 genes were identified in some selected MQTLs providing tolerance to 5 or all 6 abiotic stresses. Comparative analysis of genes underlying MQTLs with four RNA-seq based transcriptomic datasets unravelled a total of 189 differentially expressed genes which also included at least 11 most promising candidate genes common among different datasets. The promoter analysis showed that the promoters of these genes include many stress responsiveness cis-regulatory elements, such as ARE, MBS, TC-rich repeats, As-1 element, STRE, LTR, WRE3, and WUN-motif among others. Further, some MQTLs also overlapped with as many as 34 known abiotic stress tolerance genes. In addition, numerous ortho-MQTLs among the wheat, maize, and rice genomes were discovered. These findings could help with fine mapping and gene cloning, as well as marker-assisted breeding for multiple abiotic stress tolerances in wheat.
Collapse
Affiliation(s)
- Mohammad Jafar Tanin
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, Uttar Pradesh, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
20
|
Zhao H, Pandey BR, Khansefid M, Khahrood HV, Sudheesh S, Joshi S, Kant S, Kaur S, Rosewarne GM. Combining NDVI and Bacterial Blight Score to Predict Grain Yield in Field Pea. FRONTIERS IN PLANT SCIENCE 2022; 13:923381. [PMID: 35837454 PMCID: PMC9274273 DOI: 10.3389/fpls.2022.923381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Field pea is the most commonly grown temperate pulse crop, with close to 15 million tons produced globally in 2020. Varieties improved through breeding are important to ensure ongoing improvements in yield and disease resistance. Genomic selection (GS) is a modern breeding approach that could substantially improve the rate of genetic gain for grain yield, and its deployment depends on the prediction accuracy (PA) that can be achieved. In our study, four yield trials representing breeding lines' advancement stages of the breeding program (S0, S1, S2, and S3) were assessed with grain yield, aerial high-throughput phenotyping (normalized difference vegetation index, NDVI), and bacterial blight disease scores (BBSC). Low-to-moderate broad-sense heritability (0.31-0.71) and narrow-sense heritability (0.13-0.71) were observed, as the estimated additive and non-additive genetic components for the three traits varied with the different models fitted. The genetic correlations among the three traits were high, particularly in the S0-S2 stages. NDVI and BBSC were combined to investigate the PA for grain yield by univariate and multivariate GS models, and multivariate models showed higher PA than univariate models in both cross-validation and forward prediction methods. A 6-50% improvement in PA was achieved when multivariate models were deployed. The highest PA was indicated in the forward prediction scenario when the training population consisted of early generation breeding stages with the multivariate models. Both NDVI and BBSC are commonly used traits that could be measured in the early growth stage; however, our study suggested that NDVI is a more useful trait to predict grain yield with high accuracy in the field pea breeding program, especially in diseased trials, through its incorporation into multivariate models.
Collapse
Affiliation(s)
- Huanhuan Zhao
- Agriculture Victoria, AgriBio, Centre for Agri Bioscience, Bundoora, VIC, Australia
| | - Babu R. Pandey
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
| | - Majid Khansefid
- Agriculture Victoria, AgriBio, Centre for Agri Bioscience, Bundoora, VIC, Australia
| | - Hossein V. Khahrood
- Agriculture Victoria, AgriBio, Centre for Agri Bioscience, Bundoora, VIC, Australia
| | - Shimna Sudheesh
- Agriculture Victoria, AgriBio, Centre for Agri Bioscience, Bundoora, VIC, Australia
| | - Sameer Joshi
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
| | - Surya Kant
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Sukhjiwan Kaur
- Agriculture Victoria, AgriBio, Centre for Agri Bioscience, Bundoora, VIC, Australia
| | - Garry M. Rosewarne
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
- Centre for Agricultural Innovation, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Sandhu KS, Patil SS, Aoun M, Carter AH. Multi-Trait Multi-Environment Genomic Prediction for End-Use Quality Traits in Winter Wheat. Front Genet 2022; 13:831020. [PMID: 35173770 PMCID: PMC8841657 DOI: 10.3389/fgene.2022.831020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Soft white wheat is a wheat class used in foreign and domestic markets to make various end products requiring specific quality attributes. Due to associated cost, time, and amount of seed needed, phenotyping for the end-use quality trait is delayed until later generations. Previously, we explored the potential of using genomic selection (GS) for selecting superior genotypes earlier in the breeding program. Breeders typically measure multiple traits across various locations, and it opens up the avenue for exploring multi-trait-based GS models. This study's main objective was to explore the potential of using multi-trait GS models for predicting seven different end-use quality traits using cross-validation, independent prediction, and across-location predictions in a wheat breeding program. The population used consisted of 666 soft white wheat genotypes planted for 5 years at two locations in Washington, United States. We optimized and compared the performances of four uni-trait- and multi-trait-based GS models, namely, Bayes B, genomic best linear unbiased prediction (GBLUP), multilayer perceptron (MLP), and random forests. The prediction accuracies for multi-trait GS models were 5.5 and 7.9% superior to uni-trait models for the within-environment and across-location predictions. Multi-trait machine and deep learning models performed superior to GBLUP and Bayes B for across-location predictions, but their advantages diminished when the genotype by environment component was included in the model. The highest improvement in prediction accuracy, that is, 35% was obtained for flour protein content with the multi-trait MLP model. This study showed the potential of using multi-trait-based GS models to enhance prediction accuracy by using information from previously phenotyped traits. It would assist in speeding up the breeding cycle time in a cost-friendly manner.
Collapse
Affiliation(s)
- Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Shruti Sunil Patil
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, United States1
| | - Meriem Aoun
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Arron H. Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
22
|
Sandhu KS, Merrick LF, Sankaran S, Zhang Z, Carter AH. Prospectus of Genomic Selection and Phenomics in Cereal, Legume and Oilseed Breeding Programs. Front Genet 2022. [PMCID: PMC8814369 DOI: 10.3389/fgene.2021.829131] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The last decade witnessed an unprecedented increase in the adoption of genomic selection (GS) and phenomics tools in plant breeding programs, especially in major cereal crops. GS has demonstrated the potential for selecting superior genotypes with high precision and accelerating the breeding cycle. Phenomics is a rapidly advancing domain to alleviate phenotyping bottlenecks and explores new large-scale phenotyping and data acquisition methods. In this review, we discuss the lesson learned from GS and phenomics in six self-pollinated crops, primarily focusing on rice, wheat, soybean, common bean, chickpea, and groundnut, and their implementation schemes are discussed after assessing their impact in the breeding programs. Here, the status of the adoption of genomics and phenomics is provided for those crops, with a complete GS overview. GS’s progress until 2020 is discussed in detail, and relevant information and links to the source codes are provided for implementing this technology into plant breeding programs, with most of the examples from wheat breeding programs. Detailed information about various phenotyping tools is provided to strengthen the field of phenomics for a plant breeder in the coming years. Finally, we highlight the benefits of merging genomic selection, phenomics, and machine and deep learning that have resulted in extraordinary results during recent years in wheat, rice, and soybean. Hence, there is a potential for adopting these technologies into crops like the common bean, chickpea, and groundnut. The adoption of phenomics and GS into different breeding programs will accelerate genetic gain that would create an impact on food security, realizing the need to feed an ever-growing population.
Collapse
Affiliation(s)
- Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- *Correspondence: Karansher S. Sandhu,
| | - Lance F. Merrick
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Sindhuja Sankaran
- Department of Biological System Engineering, Washington State University, Pullman, WA, United States
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Arron H. Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|