1
|
Zhang M, Song M, Cheng F, Han X, Cheng C, Yu X, Chen J, Lou Q. The mutation of ent-kaurenoic acid oxidase, a key enzyme involved in gibberellin biosynthesis, confers a dwarf phenotype to cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:12. [PMID: 39718570 DOI: 10.1007/s00122-024-04785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024]
Abstract
KEY MESSAGE A dwarf mutant with short branches (csdf) was identified from EMS-induced mutagenesis. Bulked segregant analysis sequencing and map-based cloning revealed CsKAO encoding ent-kaurenoic acid oxidase as the causal gene. Plant architecture is the primary target of artificial selection during domestication and improvement based on the determinate function for fruit yield. Plant architecture is regulated by complicated genetic networks, more underlying mechanism remains to be elucidated. Here, we identified a dwarf mutant (csdf) in an EMS-induced cucumber population, and genetic analysis revealed the mutated phenotype is controlled by a single recessive gene. Optical microanalysis showed the decrease in cell length is mainly contribute to the dwarf phenotype. By strategy of BSA-seq combined with map-based cloning, CsaV3_6G006520 (CsKAO) on chromosome 6 was identified as the candidate gene for csdf. Gene cloning and sequence alignment revealed a G to A mutation in the sixth exon, which causes the premature stop codon in CsKAO of csdf. Expression analysis revealed CsKAO was expressed in various tissues with abundant transcripts, and has significant differences between WT and csdf. Gene annotation indicated CsKAO encodes a cytochrome P450 family ent-kaurenoic acid oxidase which functioned in GA biosynthesis. GA-relevant analysis showed that endogenous GA contents were significantly decreased and the dwarfism phenotype could be restored by exogenous GA3 treatment; while, some of the representative enzyme genes involved in the GA pathway were up-regulated in csdf. Besides, IAA content is decreased in the terminal bud and increased in the lateral bud in csdf as well as several IAA-related genes are differentially expressed. Overall, those findings suggest that CsKAO regulated plant height via the influence on GAs pathways, and IAA might interact with GAs on plant architecture morphogenesis in cucumber.
Collapse
Affiliation(s)
- Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Feng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Xiaoxu Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China.
| |
Collapse
|
2
|
Jiang X, Zhang L, Li Y, Long R, Yang Q, Kang J. Functional Characterization of the MsFKF1 Gene Reveals Its Dual Role in Regulating the Flowering Time and Plant Height in Medicago sativa L. PLANTS (BASEL, SWITZERLAND) 2024; 13:655. [PMID: 38475501 DOI: 10.3390/plants13050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 03/14/2024]
Abstract
Alfalfa (M. sativa), a perennial legume forage, is known for its high yield and good quality. As a long-day plant, it is sensitive to changes in the day length, which affects the flowering time and plant growth, and limits alfalfa yield. Photoperiod-mediated delayed flowering in alfalfa helps to extend the vegetative growth period and increase the yield. We isolated a blue-light phytohormone gene from the alfalfa genome that is an ortholog of soybean FKF1 and named it MsFKF1. Gene expression analyses showed that MsFKF1 responds to blue light and the circadian clock in alfalfa. We found that MsFKF1 regulates the flowering time through the plant circadian clock pathway by inhibiting the transcription of E1 and COL, thus suppressing FLOWERING LOCUS T a1 (FTa1) transcription. In addition, transgenic lines exhibited higher plant height and accumulated more biomass in comparison to wild-type plants. However, the increased fiber (NDF and ADF) and lignin content also led to a reduction in the digestibility of the forage. The key genes related to GA biosynthesis, GA20OX1, increased in the transgenic lines, while GA2OX1 decreased for the inactive GA transformation. These findings offer novel insights on the function of MsFKF1 in the regulation of the flowering time and plant height in cultivated M. sativa. These insights into MsFKF1's roles in alfalfa offer potential strategies for molecular breeding aimed at optimizing flowering time and biomass yield.
Collapse
Affiliation(s)
- Xu Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Lili Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yajing Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Zhou M, Li Y, Cheng Z, Zheng X, Cai C, Wang H, Lu K, Zhu C, Ding Y. Important Factors Controlling Gibberellin Homeostasis in Plant Height Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15895-15907. [PMID: 37862148 DOI: 10.1021/acs.jafc.3c03560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Plant height is an important agronomic trait that is closely associated with crop yield and quality. Gibberellins (GAs), a class of highly efficient plant growth regulators, play key roles in regulating plant height. Increasing reports indicate that transcriptional regulation is a major point of regulation of the GA pathways. Although substantial knowledge has been gained regarding GA biosynthetic and signaling pathways, important factors contributing to the regulatory mechanisms homeostatically controlling GA levels remain to be elucidated. Here, we provide an overview of current knowledge regarding the regulatory network involving transcription factors, noncoding RNAs, and histone modifications involved in GA pathways. We also discuss the mechanisms of interaction between GAs and other hormones in plant height development. Finally, future directions for applying knowledge of the GA hormone in crop breeding are described.
Collapse
Affiliation(s)
- Mei Zhou
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yakun Li
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhuowei Cheng
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xinyu Zheng
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Chong Cai
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Huizhen Wang
- Huangshan Institute of Product Quality Inspection, Huangshan 242700, China
| | - Kaixing Lu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo 315000, China
| | - Cheng Zhu
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yanfei Ding
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
4
|
Marcotuli I, Mandrone M, Chiocchio I, Poli F, Gadaleta A, Ferrara G. Metabolomics and genetics of reproductive bud development in Ficus carica var. sativa (edible fig) and in Ficus carica var. caprificus (caprifig): similarities and differences. FRONTIERS IN PLANT SCIENCE 2023; 14:1192350. [PMID: 37360723 PMCID: PMC10285451 DOI: 10.3389/fpls.2023.1192350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/28/2023] [Indexed: 06/28/2023]
Abstract
In figs, reproductive biology comprises cultivars requiring or not pollination, with female trees (edible fig) and male trees (caprifig) bearing different types of fruits. Metabolomic and genetic studies may clarify bud differentiation mechanisms behind the different fruits. We used a targeted metabolomic analysis and genetic investigation through RNA sequence and candidate gene investigation to perform a deep analysis of buds of two fig cultivars, 'Petrelli' (San Pedro type) and 'Dottato' (Common type), and one caprifig. In this work, proton nuclear magnetic resonance (1H NMR-based metabolomics) has been used to analyze and compare buds of the caprifig and the two fig cultivars collected at different times of the season. Metabolomic data of buds collected on the caprifig, 'Petrelli', and 'Dottato' were treated individually, building three separate orthogonal partial least squared (OPLS) models, using the "y" variable as the sampling time to allow the identification of the correlations among metabolomic profiles of buds. The sampling times revealed different patterns between caprifig and the two edible fig cultivars. A significant amount of glucose and fructose was found in 'Petrelli', differently from 'Dottato', in the buds in June, suggesting that these sugars not only are used by the ripening brebas of 'Petrelli' but also are directed toward the developing buds on the current year shoot for either a main crop (fruit in the current season) or a breba (fruit in the successive season). Genetic characterization through the RNA-seq of buds and comparison with the literature allowed the identification of 473 downregulated genes, with 22 only in profichi, and 391 upregulated genes, with 21 only in mammoni.
Collapse
Affiliation(s)
- Ilaria Marcotuli
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Manuela Mandrone
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Ilaria Chiocchio
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Ferruccio Poli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Agata Gadaleta
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Giuseppe Ferrara
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
5
|
Guan J, Li J, Yao Q, Liu Z, Feng H, Zhang Y. Identification of two tandem genes associated with primary rosette branching in flowering Chinese cabbage. FRONTIERS IN PLANT SCIENCE 2022; 13:1083528. [PMID: 36600928 PMCID: PMC9806259 DOI: 10.3389/fpls.2022.1083528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Branching is an important agronomic trait determining plant architecture and yield; however, the molecular mechanisms underlying branching in the stalk vegetable, flowering Chinese cabbage, remain unclear. The present study identified two tandem genes responsible for primary rosette branching in flowering Chinese cabbage by GradedPool-Seq (GPS) combined with Kompetitive Allele Specific PCR (KASP) genotyping. A 900 kb candidate region was mapped in the 28.0-28.9 Mb interval of chromosome A07 through whole-genome sequencing of three graded-pool samples from the F2 population derived by crossing the branching and non-branching lines. KASP genotyping narrowed the candidate region to 24.6 kb. Two tandem genes, BraA07g041560.3C and BraA07g041570.3C, homologous to AT1G78440 encoding GA2ox1 oxidase, were identified as the candidate genes. The BraA07g041560.3C sequence was identical between the branching and non-branching lines, but BraA07g041570.3C had a synonymous single nucleotide polymorphic (SNP) mutation in the first exon (290th bp, A to G). In addition, an ERE cis-regulatory element was absent in the promoter of BraA07g041560.3C, and an MYB cis-regulatory element in the promoter of BraA07g041570.3C in the branching line. Gibberellic acid (GA3) treatment decreased the primary rosette branch number in the branching line, indicating the significant role of GA in regulating branching in flowering Chinese cabbage. These results provide valuable information for revealing the regulatory mechanisms of branching and contributing to the breeding programs of developing high-yielding species in flowering Chinese cabbage.
Collapse
|
6
|
Cheng X, Xie H, Zhang K, Wen J. Enabling Medicago truncatula forward genetics: identification of genetic crossing partner for R108 and development of mapping resources for Tnt1 mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:608-616. [PMID: 35510429 DOI: 10.1111/tpj.15797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/19/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Though Medicago truncatula Tnt1 mutants are widely used by researchers in the legume community, they are mainly used for reverse genetics because of the availability of the BLAST-searchable large-scale flanking sequence tags database. However, these mutants should have also been used extensively for forward genetic screens, an effort that has been hindered due to the lack of a compatible genetic crossing partner for the M. truncatula genotype R108, from which Tnt1 mutants were generated. In this study, we selected three Medicago HapMap lines (HM017, HM018 and HM022) and performed reciprocal genetic crosses with R108. After phenotypic analyses in F1 and F2 progenies, HM017 was identified as a compatible crossing partner with R108. By comparing the assembled genomic sequences of HM017 and R108, we developed and confirmed 318 Indel markers evenly distributed across the eight chromosomes of the M. truncatula genome. To validate the effectiveness of these markers, by employing the map-based cloning approach, we cloned the causative gene in the dwarf mutant crs isolated from the Tnt1 mutant population, identifying it as gibberellin 3-β-dioxygenase 1, using some of the confirmed Indel markers. The primer sequences and the size difference of each marker were made available for users in the web-based database. The identification of the crossing partner for R108 and the generation of Indel markers will enhance the forward genetics and the overall usage of the Tnt1 mutants.
Collapse
Affiliation(s)
- Xiaofei Cheng
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Hongli Xie
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Kuihua Zhang
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Jiangqi Wen
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| |
Collapse
|
7
|
Mo X, He L, Liu Y, Wang D, Zhao B, Chen J. The Genetic Control of the Compound Leaf Patterning in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2022; 12:749989. [PMID: 35095943 PMCID: PMC8792858 DOI: 10.3389/fpls.2021.749989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Simple and compound which are the two basic types of leaves are distinguished by the pattern of the distribution of blades on the petiole. Compared to simple leaves comprising a single blade, compound leaves have multiple blade units and exhibit more complex and diverse patterns of organ organization, and the molecular mechanisms underlying their pattern formation are receiving more and more attention in recent years. Studies in model legume Medicago truncatula have led to an improved understanding of the genetic control of the compound leaf patterning. This review is an attempt to summarize the current knowledge about the compound leaf morphogenesis of M. truncatula, with a focus on the molecular mechanisms involved in pattern formation. It also includes some comparisons of the molecular mechanisms between leaf morphogenesis of different model species and offers useful information for the molecular design of legume crops.
Collapse
Affiliation(s)
- Xiaoyu Mo
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Ye Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dongfa Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Baolin Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|