1
|
Kaplan Y, Wang Y, Manasherova E, Cohen H, Ginzberg I. Metabolic and gene-expression analyses reveal developmental dynamics of cutin deposition in pomegranate fruit grown under different environmental conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108991. [PMID: 39106765 DOI: 10.1016/j.plaphy.2024.108991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
The chemical and transcriptional changes in the cuticle of pomegranate (Punica granatum L.) fruit grown under different environmental conditions were studied. We collected fruit from three orchards located in different regions in Israel, each with a distinct microclimate. Fruit were collected at six phenological stages, and cutin monomers in the fruit cuticle were profiled by gas chromatography-mass spectrometry (GC-MS), along with qPCR transcript-expression analyses of selected cutin-related genes. While fruit phenotypes were comparable along development in all three orchards, principal component analyses of cutin monomer profiles suggested clear separation between cuticle samples of young green fruit to those of maturing fruit. Moreover, total cutin contents in green fruit were lower in the orchard characterized by a hot and dry climate compared to orchards with moderate temperatures. The variances detected in total cutin contents between orchards corresponded well with the expression patterns of BODYGUARD, a key biosynthetic gene operating in the cutin biosynthetic pathway. Based on our extraction protocols, we found that the cutin polyester that builds the pomegranate fruit cuticle accumulates some levels of gallic acid-the precursor of punicalagin, a well-known potent antioxidant metabolite in pomegranate fruit. The gallic acid was also one of the predominant metabolites contributing to the variability between developmental stages and orchards, and its accumulation levels were opposite to the expression patterns of the UGT73AL1 gene which glycosylates gallic acid to synthesize punicalagin. To the best of our knowledge, this is the first detailed composition of the cutin polyester that forms the pomegranate fruit cuticle.
Collapse
Affiliation(s)
- Yulia Kaplan
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion, 7505101, Israel.
| | - Yuying Wang
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion, 7505101, Israel.
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion, 7505101, Israel.
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion, 7505101, Israel.
| | - Idit Ginzberg
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
2
|
Oikawa A, Takeuchi K, Morita K, Horibe Y, Sasaki R, Murayama H. Effects of Climate Conditions before Harvest Date on Edamame Metabolome. PLANTS (BASEL, SWITZERLAND) 2023; 13:87. [PMID: 38202395 PMCID: PMC10780805 DOI: 10.3390/plants13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Edamame is a green soybean that is rich in nutrients. Boiled edamame has been traditionally used for food in the East Asia region. It was known among farmers that conditions, such as temperature and climate on the day of harvest, affect the quality of edamame. Large-scale farmers harvest edamame on multiple days in the same year; however, the quality of edamame varies from day to day due to variations in climate conditions. In this study, we harvested edamame over several days between 2013 and 2018, obtained the climate conditions on the harvest date, and performed metabolome analysis using capillary electrophoresis mass spectrometry. To clarify the correlation between climate conditions before the harvest date and edamame components, comparative analyses of the obtained meteorological and metabolomic data were conducted. We found positive and negative correlations between the sunshine duration and average temperature, and the amounts of some edamame components. Furthermore, correlations were observed between the annual fluctuations in climate conditions and edamame components. Our findings suggest that the climate conditions before the date of harvesting are closely related to edamame quality.
Collapse
Affiliation(s)
- Akira Oikawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka 997-8555, Japan (H.M.)
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama 230-0045, Japan;
| | - Katsutaka Takeuchi
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka 997-8555, Japan (H.M.)
| | - Kei Morita
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka 997-8555, Japan (H.M.)
| | - Yamato Horibe
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka 997-8555, Japan (H.M.)
| | - Ryosuke Sasaki
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama 230-0045, Japan;
| | - Hideki Murayama
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka 997-8555, Japan (H.M.)
| |
Collapse
|
3
|
Moore K, Reeksting SB, Nair V, Pannakal ST, Roy N, Eilstein J, Grégoire S, Delgado-Charro MB, Guy RH. Extraction of phytochemicals from the pomegranate ( Punica granatum L., Punicaceae) by reverse iontophoresis. RSC Adv 2023; 13:11261-11268. [PMID: 37057274 PMCID: PMC10087384 DOI: 10.1039/d3ra01242e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Plant metabolic profiling can provide a wealth of information regarding the biochemical status of the organism, but sample acquisition typically requires an invasive and/or destructive extraction process. Reverse iontophoresis (RI) imposes a small electric field across a biological membrane to substantially enhance the transport of charged and polar compounds and has been employed, in particular, to extract biomarkers of interest across human skin. The objective of this work was to examine the capability of RI to sample phytochemicals in a minimally invasive fashion in fructo (i.e., from the intact fruit). RI was principally used to extract a model, bioactive compound - specifically, ellagic acid - from the fruit peel of Punica granatum L. The RI sampling protocol was refined using isolated peel, and a number of experimental factors were examined and optimised, including preparation of the peel samples, the current intensity applied and the pH of the medium into which samples were collected. The most favourable conditions (3 mA current for a period of 1 hour, into a buffer at pH 7.4) were then applied to the successful RI extraction of ellagic acid from intact pomegranates. Multiple additional phytochemicals were also extracted and identified by liquid chromatography with tandem mass spectrometry (LC-MS/MS). A successful proof-of-concept has been achieved, demonstrating the capability to non-destructively extract phytochemicals of interest from intact fruit.
Collapse
Affiliation(s)
- Kieran Moore
- Department of Life Sciences, University of Bath UK
| | | | - Vimal Nair
- Advanced Research, L'Oréal Research and Innovation India Bangalore India
| | - Steve T Pannakal
- Advanced Research, L'Oréal Research and Innovation India Bangalore India
| | - Nita Roy
- Advanced Research, L'Oréal Research and Innovation India Bangalore India
| | - Joan Eilstein
- Advanced Research, L'Oréal Research and Innovation India Bangalore India
| | | | | | | |
Collapse
|
4
|
Anticancer Effect of Pomegranate Peel Polyphenols against Cervical Cancer. Antioxidants (Basel) 2023; 12:antiox12010127. [PMID: 36670990 PMCID: PMC9854619 DOI: 10.3390/antiox12010127] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Polyphenols are a broad group of bioactive phytochemicals with powerful antioxidant, anti-inflammatory, immunomodulatory, and antiviral activities. Numerous studies have demonstrated that polyphenol extracts obtained from natural sources can be used for the prevention and treatment of cancer. Pomegranate peel extract is an excellent source of polyphenols, such as punicalagin, punicalin, ellagic acid, and caffeic acid, among others. These phenolic compounds have antineoplastic activity in in vitro models of cervical cancer through the regulation of cellular redox balance, induction of apoptosis, cell cycle arrest, and modulation of different signaling pathways. The current review summarizes recent data from scientific reports that address the anticancer activity of the predominant polyphenol compounds present in PPE and their different mechanisms of action in cervical cancer models.
Collapse
|
5
|
Wang Y, Zhao Y, Wu Y, Zhao X, Hao Z, Luo H, Yuan Z. Transcriptional profiling of long non-coding RNAs regulating fruit cracking in Punica granatum L. under bagging. FRONTIERS IN PLANT SCIENCE 2022; 13:943547. [PMID: 36304394 PMCID: PMC9592827 DOI: 10.3389/fpls.2022.943547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Fruit cracking tremendously damages the appearance of fruit, easily leads to pathogen invasion, greatly reduces the marketability and causes immense economic losses. The pivotal role of long non-coding RNAs (lncRNAs) in diverse biological processes has been confirmed, while the roles of lncRNAs underlying fruit cracking remain poorly understood. In this study, the incidence of fruit cracking was 7.26% under the bagging treatment, the control group was 38.11%, indicating that bagging considerably diminished the fruit cracking rate. LncRNA libraries for fruit cracking (FC), fruit non-cracking (FNC) and fruit non-cracking under bagging (FB) in pomegranate (Punica granatum L.) were performed and analysed via high-throughput transcriptome sequencing. A total of 3194 lncRNAs were obtained with a total length of 4898846 nt and an average length of 1533.77 nt in pomegranate. We identified 42 differentially expressed lncRNAs (DELs) and 137 differentially expressed mRNAs (DEGs) in FC vs FNC and 35 DELs and 160 DEGs in FB vs FC that formed co-expression networks respectively, suggesting that there are involved in phytohormone signaling pathway, lignin catabolic process, lipid transport/binding, cutin biosynthetic process and cell wall organization. We also found that 18 cis-acting DELs regulated 18 target genes, and 10 trans-acting DELs regulated 24 target genes in FC vs FNC, 23 DELs regulate 23 target genes for the cis-acting lncRNAs and 12 DELs regulated 36 target genes in FB vs FC, which provides an understanding for the regulation of the fruit cracking. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results demonstrated that DELs participated in calcium ion binding, glycerophospholipid metabolism, flavonoid biosynthetic process, cell wall biogenesis, xyloglucan metabolic process, hormone signal transduction and starch and sucrose metabolism. Our findings provide new insights into the roles of lncRNAs in regulating the fruit cracking and lay the foundation for further improvement of pomegranate quality.
Collapse
Affiliation(s)
- Yuying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yujie Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhaoxiang Hao
- Zaozhuang Pomegranate Research Center, Institute of Botany, Zaozhuang, China
| | - Hua Luo
- Zaozhuang Pomegranate Research Center, Institute of Botany, Zaozhuang, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
6
|
Ginzberg I, Faigenboim A. Ripening of Pomegranate Skin as Revealed by Developmental Transcriptomics. Cells 2022; 11:cells11142215. [PMID: 35883658 PMCID: PMC9320897 DOI: 10.3390/cells11142215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
The appearance of pomegranate (Punica granatum L.) fruit is highly important for its marketing. The primary concerns are obtaining sufficient red pigment accumulation and minimal cracking of the fruit skin (the outer red layer of the peel). We analyzed the skin transcriptome of pomegranate cv. Wonderful at distinct time points of fruit development to characterize the processes that occur in the skin during fruit ripening and which may reflect on processes in the whole fruit, such as the non-climacteric nature of pomegranate. The data suggested a ripening mechanism in pomegranate skin that differs from that in strawberry—the model plant for non-climacteric fruit where abscisic acid is the growth regulator that drives ripening—involving ethylene, polyamine, and jasmonic acid pathways. The biosynthetic pathways of important metabolites in pomegranate—hydrolyzable tannins and anthocyanins—were co-upregulated at the ripening stage, in line with the visual enhancement of red coloration. Interestingly, cuticle- and cell-wall-related genes that showed differential expression between the developmental stages were mainly upregulated in the skin of early fruit, with lower expression at mid-growth and ripening stages. Nevertheless, lignification may be involved in skin hardening in the mature fruit.
Collapse
|
7
|
El-Shehawi AM, Sayed S, Hassan MM, Al-Otaibi S, Althobaiti F, Elseehy MM, Soliman M. Taify Pomegranate Juice (TPJ) Abrogates Acrylamide-Induced Oxidative Stress Through the Regulation of Antioxidant Activity, Inflammation, and Apoptosis-Associated Genes. Front Vet Sci 2022; 9:833605. [PMID: 35392110 PMCID: PMC8980525 DOI: 10.3389/fvets.2022.833605] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Acrylamide (ACR) has various effects on biological systems, including oxidative stress and its associated metabolic disorders. Previous research reports that plants growing at high altitude have a different profile of antioxidants. In the current report, the Taify pomegranate juice (TPJ) of the Taify pomegranate growing at the Taif region (high altitude), Saudi Arabia, was investigated for its protective activity from ACR-induced oxidative stress. Rats were treated with ACR, TPJ, or TPJ+ACR, and various assays, including blood chemistry, liver function biomarkers, gene expression of endogenous antioxidant enzymes, oxidative stress regulatory genes, inflammation biomarkers, and apoptosis, were estimated using biochemical, real-time PCR, histopathological, and immunohistochemical analysis. TPJ showed a protective function of ACR-induced alteration of AST, ALT, GGT, urea, total proteins, albumin, MDA, and NO. It also increased the level of the endogenous antioxidative enzymes, including SOD, catalase, and GSH. It showed anti-inflammatory activity by reduction the TNF-α, IL-6 secretion and the enhancing of IL-10 levels. At the gene expression level, TPJ upregulated the expression of endogenous antioxidant genes (SOD and catalase) and of antioxidant-regulating genes Nrf2 and HO-1; downregulated the expression of inflammatory genes TGF-β1, COX2, and the apoptotic gene caspase-3; and upregulated the expression of antiapoptotic gene Bcl2. At the histological level, TPJ showed a protective effect from the ACR-induced hepatic histological damage. Results of this study conclude that TPJ has a protective effect from ACR-induced oxidative stress and its associated metabolic alterations through its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
- *Correspondence: Ahmed M. El-Shehawi
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, Taif, Saudi Arabia
| | - Mohamed M. Hassan
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Saad Al-Otaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Mona M. Elseehy
- Department of Genetics, Faculty of Agriculture, University of Alexandria, Alexandria, Egypt
| | - Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| |
Collapse
|
8
|
Abstract
The skin of a fruit protects the vulnerable, nutrient-rich flesh and seed(s) within from the hostile environment. It is also responsible for the fruit’s appearance. In many fruitcrop species, russeting compromises fruit appearance and thus commercial value. Here, we review the literature on fruit russeting, focusing on the factors and mechanisms that induce it and on the management and breeding strategies that may reduce it. Compared with a primary fruit skin, which is usually distinctively colored and shiny, a secondary fruit skin is reddish-brown, dull and slightly rough to the touch (i.e., russeted). This secondary skin (periderm) comprises phellem cells with suberized cell walls, a phellogen and a phelloderm. Russeted (secondary) fruit skins have similar mechanical properties to non-russeted (primary) ones but are more plastic. However, russeted fruit skins are more permeable to water vapor, so russeted fruits suffer higher postharvest water loss, reduced shine, increased shrivel and reduced packed weight (most fruit is sold per kg). Orchard factors that induce russeting include expansion-growth-induced strain, surface wetness, mechanical damage, freezing temperatures, some pests and diseases and some agrochemicals. All these probably act via an increased incidence of cuticular microcracking as a result of local concentrations of mechanical stress. Microcracking impairs the cuticle’s barrier properties. Potential triggers of russeting (the development of a periderm), consequent on cuticular microcracking, include locally high concentrations of O2, lower concentrations of CO2 and more negative water potentials. Horticulturists sometimes spray gibberellins, cytokinins or boron to reduce russeting. Bagging fruit (to exclude surface moisture) is also reportedly effective. From a breeding perspective, genotypes having small and more uniform-sized epidermal cells are judged less likely to be susceptible to russeting.
Collapse
|