1
|
Chen H, Wu W, Du K, Yang J, Kang X. CCT39 Transcription Factor Promotes Chlorophyll Biosynthesis and Photosynthesis in Poplar. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39698864 DOI: 10.1111/pce.15329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/10/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024]
Abstract
Chlorophyll serves as a crucial pigment in plants, essential for photosynthesis, growth, and development. Our previous study has shown that PpnCCT39 can increase leaf chlorophyll content and photosynthesis rate in poplar. However, the underlying molecular mechanisms remain unknown. In this study, we observed that overexpression of PpnCCT39 not only elevates chlorophyll content and photosynthesis, but also induces alterations in leaf morphology, basal diameter, and chloroplast structure. By performing RNA-seq on terminal buds and leaves at leaf positions 1, 3, 5, and 10, we determined that PpnCCT39 predominantly exerts its effects in young leaves. Chromatin Immunoprecipitation Sequencing (ChIP-seq) performed on PpnCCT39-overexpressing poplars identified 17 194 potential regulatory target genes. By integrating RNA-seq and ChIP-seq datasets along with validation assays for protein-DNA interactions, we determined that PpnCCT39 directly stimulated the transcription of three key genes involved in the chlorophyll biosynthesis and photosynthesis pathways: PagHO1, PagLIL3, and PagPYG7. Furthermore, protein interaction assays revealed that PpnCCT39 interacts with PagRD19 and PagATP2, localized in vesicles and mitochondria respectively, with these interactions occurring within chloroplasts. This study elucidates the molecular mechanism by which the PpnCCT39 transcription factor in poplar promotes chlorophyll biosynthesis and photosynthesis. It also highlights the critical role of PpnCCT39 in nucleocytoplasmic interactions. These findings underscore the significance of PpnCCT39 in regulating chlorophyll biosynthesis and enhancing photosynthesis through molecular design.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenqi Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kang Du
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jun Yang
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiangyang Kang
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Huang Y, Schnurbusch T. The Birth and Death of Floral Organs in Cereal Crops. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:427-458. [PMID: 38424062 DOI: 10.1146/annurev-arplant-060223-041716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Florets of cereal crops are the basic reproductive organs that produce grains for food or feed. The birth of a floret progresses through meristem initiation and floral organ identity specification and maintenance. During these processes, both endogenous and external cues can trigger a premature floral organ death, leading to reproductive failure. Recent advances in different cereal crops have identified both conserved and distinct regulators governing the birth of a floret. However, the molecular underpinnings of floral death are just beginning to be understood. In this review, we first provide a general overview of the current findings in the field of floral development in major cereals and outline different forms of floral deaths, particularly in the Triticeae crops. We then highlight the importance of vascular patterning and photosynthesis in floral development and reproductive success and argue for an expanded knowledge of floral birth-death balance in the context of agroecology.
Collapse
Affiliation(s)
- Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany; ,
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany; ,
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
3
|
Xia X, Liu L, Cai K, Song X, Yue W, Wang J. A splicing site change between exon 5 and 6 of the nuclear-encoded chloroplast-localized HvYGL8 gene results in reduced chlorophyll content and plant height in barley. FRONTIERS IN PLANT SCIENCE 2023; 14:1327246. [PMID: 38192692 PMCID: PMC10773589 DOI: 10.3389/fpls.2023.1327246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
The chloroplast is an important cellular organelle and metabolic hub, which is not only responsible for plant photosynthesis but is also involved in the de novo biosynthesis of pigments, fatty acids, and hormone metabolisms. Several genes that are responsible for rice leaf color variations have been reported to be directly or indirectly involved in chlorophyll biosynthesis and chloroplast development, whereas a few genes have been functionally confirmed to be responsible for leaf color changes in barley at the molecular level. In this study, we obtained a yellow leaf and dwarf ygl8 mutant from the progeny of Morex (a variety of barley) seeds treated with EMS. We performed bulked-segregant analysis (BSA) and RNA-seq analysis and targeted a UMP kinase encoding gene, YGL8, which generated a splicing site change between exon 5 and 6 of YGL8 due to a G to A single-nucleotide transition in the 5th exon/intron junction in the ygl8 mutant. The splicing site change between exon 5 and 6 of YGL8 had no effects on chloroplast subcellular localization but resulted in an additional loop in the UMP kinase domain, which might disturb the access of the substrates. On one hand, the splicing site change between exon 5 and 6 of YGL8 downregulated the transcriptional expression of chloroplast-encoded genes and chlorophyll-biosynthesis-related genes in a temperature-dependent manner in the ygl8 mutant. On the other hand, the downregulation of bioactive GA-biosynthesis-related GA20ox genes and cell-wall-cellulose-biosynthesis-related CesA genes was also observed in the ygl8 mutant, which led to a reduction in plant height. Our study will facilitate the understanding of the regulation of leaf color and plant height in barley.
Collapse
Affiliation(s)
- Xue Xia
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Zhejiang Academy of Agricultural Sciences, National Barley Improvement Center, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Lei Liu
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Zhejiang Academy of Agricultural Sciences, National Barley Improvement Center, Hangzhou, China
| | - Kangfeng Cai
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Zhejiang Academy of Agricultural Sciences, National Barley Improvement Center, Hangzhou, China
| | - Xiujuan Song
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Zhejiang Academy of Agricultural Sciences, National Barley Improvement Center, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Wenhao Yue
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Zhejiang Academy of Agricultural Sciences, National Barley Improvement Center, Hangzhou, China
| | - Junmei Wang
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Zhejiang Academy of Agricultural Sciences, National Barley Improvement Center, Hangzhou, China
| |
Collapse
|
4
|
Szurman-Zubrzycka M, Kurowska M, Till BJ, Szarejko I. Is it the end of TILLING era in plant science? FRONTIERS IN PLANT SCIENCE 2023; 14:1160695. [PMID: 37674734 PMCID: PMC10477672 DOI: 10.3389/fpls.2023.1160695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023]
Abstract
Since its introduction in 2000, the TILLING strategy has been widely used in plant research to create novel genetic diversity. TILLING is based on chemical or physical mutagenesis followed by the rapid identification of mutations within genes of interest. TILLING mutants may be used for functional analysis of genes and being nontransgenic, they may be directly used in pre-breeding programs. Nevertheless, classical mutagenesis is a random process, giving rise to mutations all over the genome. Therefore TILLING mutants carry background mutations, some of which may affect the phenotype and should be eliminated, which is often time-consuming. Recently, new strategies of targeted genome editing, including CRISPR/Cas9-based methods, have been developed and optimized for many plant species. These methods precisely target only genes of interest and produce very few off-targets. Thus, the question arises: is it the end of TILLING era in plant studies? In this review, we recap the basics of the TILLING strategy, summarize the current status of plant TILLING research and present recent TILLING achievements. Based on these reports, we conclude that TILLING still plays an important role in plant research as a valuable tool for generating genetic variation for genomics and breeding projects.
Collapse
Affiliation(s)
- Miriam Szurman-Zubrzycka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Marzena Kurowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Bradley J. Till
- Veterinary Genetics Laboratory, University of California, Davis, Davis, United States
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
5
|
Alhashel AF, Fiedler JD, Nandety RS, Skiba RM, Bruggeman RS, Baldwin T, Friesen TL, Yang S. Genetic and physical localization of a major susceptibility gene to Pyrenophora teres f. maculata in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:118. [PMID: 37103563 PMCID: PMC10140075 DOI: 10.1007/s00122-023-04367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Genetic characterization of a major spot form net blotch susceptibility locus to using linkage mapping to identify a candidate gene and user-friendly markers in barley. Spot form net blotch (SFNB), caused by the necrotrophic fungal pathogen Pyrenophora teres f. maculata (Ptm), is an economically important foliar diseases in barley. Although various resistance loci have been identified, breeding for SFNB-resistant varieties has been hampered due to the complex virulence profile of Ptm populations. One resistance locus in the host may be effective against one specific isolate, but it may confer susceptibility to other isolates. A major susceptibility QTL on chromosome 7H, named Sptm1, was consistently identified in many studies. In the present study, we conduct fine mapping to localize Sptm1 with high resolution. A segregating population was developed from selected F2 progenies of the cross Tradition (S) × PI 67381 (R), in which the disease phenotype was determined by the Sptm1 locus alone. Disease phenotypes of critical recombinants were confirmed in the following two consecutive generations. Genetic mapping anchored the Sptm1 gene to an ⁓400 kb region on chromosome 7H. Gene prediction and annotation identified six protein-coding genes in the delimited Sptm1 region, and the gene encoding a putative cold-responsive protein kinase was selected as a strong candidate. Therefore, providing fine localization and candidate of Sptm1 for functional validation, our study will facilitate the understanding of susceptibility mechanism underlying the barley-Ptm interaction and offers a potential target for gene editing to develop valuable materials with broad-spectrum resistance to SFNB.
Collapse
Affiliation(s)
- Abdullah F Alhashel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jason D Fiedler
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Raja Sekhar Nandety
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Ryan M Skiba
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Robert S Bruggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Thomas Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Shengming Yang
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA.
| |
Collapse
|
6
|
Huang Y, Kamal R, Shanmugaraj N, Rutten T, Thirulogachandar V, Zhao S, Hoffie I, Hensel G, Rajaraman J, Moya YAT, Hajirezaei MR, Himmelbach A, Poursarebani N, Lundqvist U, Kumlehn J, Stein N, von Wirén N, Mascher M, Melzer M, Schnurbusch T. A molecular framework for grain number determination in barley. SCIENCE ADVANCES 2023; 9:eadd0324. [PMID: 36867700 PMCID: PMC9984178 DOI: 10.1126/sciadv.add0324] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Flowering plants with indeterminate inflorescences often produce more floral structures than they require. We found that floral primordia initiations in barley (Hordeum vulgare L.) are molecularly decoupled from their maturation into grains. While initiation is dominated by flowering-time genes, floral growth is specified by light signaling, chloroplast, and vascular developmental programs orchestrated by barley CCT MOTIF FAMILY 4 (HvCMF4), which is expressed in the inflorescence vasculature. Consequently, mutations in HvCMF4 increase primordia death and pollination failure, mainly through reducing rachis greening and limiting plastidial energy supply to developing heterotrophic floral tissues. We propose that HvCMF4 is a sensory factor for light that acts in connection with the vascular-localized circadian clock to coordinate floral initiation and survival. Notably, stacking beneficial alleles for both primordia number and survival provides positive implications on grain production. Our findings provide insights into the molecular underpinnings of grain number determination in cereal crops.
Collapse
Affiliation(s)
- Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Roop Kamal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Nandhakumar Shanmugaraj
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Venkatasubbu Thirulogachandar
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Shuangshuang Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Iris Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Goetz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Jeyaraman Rajaraman
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Yudelsy Antonia Tandron Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Naser Poursarebani
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | | | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
- Martin Luther University Halle-Wittenberg, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, 06120 Halle, Germany
| |
Collapse
|
7
|
Becker M, Hensel G. Ribonucleoprotein (RNP)-Mediated Targeted Mutagenesis in Barley (Hordeum vulgare L.). Methods Mol Biol 2023; 2653:187-197. [PMID: 36995627 DOI: 10.1007/978-1-0716-3131-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The crop species barley is a genetic model for the small grain temperate cereals. Thanks to the availability of whole genome sequence and the development of customizable endonucleases, site-directed genome modification has recently revolutionized genetic engineering. Several platforms have been established in plants, with the most flexible one offered by the clustered regularly interspaced short palindromic repeats (CRISPR) technology. In this protocol, commercially available synthetic guide RNAs (gRNAs), Cas enzymes, or custom-generated reagents are used for targeted mutagenesis in barley. The protocol has been successfully used with immature embryo explants to generate site-specific mutations in regenerants. As the double-strand break-inducing reagents are customizable and can be efficiently delivered, pre-assembled ribonucleoprotein (RNP) complexes allow efficient generation of genome-modified plants.
Collapse
Affiliation(s)
- Martin Becker
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Plant Reproductive Biology, Seeland OT Gatersleben, Germany
- Stilla Technologies, Villejuif, France
| | - Goetz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Plant Reproductive Biology, Seeland OT Gatersleben, Germany.
- Division of Molecular Biology, Centre of the Region Hana for Biotechnological and Agriculture Research, Faculty of Science, Palacký University, Olomouc, Czech Republic.
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Dusseldorf, Germany.
| |
Collapse
|
8
|
Liu Z, Liu JL, An L, Wu T, Yang L, Cheng YS, Nie XS, Qin ZQ. Genome-wide analysis of the CCT gene family in Chinese white pear (Pyrus bretschneideri Rehd.) and characterization of PbPRR2 in response to varying light signals. BMC PLANT BIOLOGY 2022; 22:81. [PMID: 35196984 PMCID: PMC8864873 DOI: 10.1186/s12870-022-03476-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Canopy architecture is critical in determining the light environment and subsequently the photosynthetic productivity of fruit crops. Numerous CCT domain-containing genes are crucial for plant adaptive responses to diverse environmental cues. Two CCT genes, the orthologues of AtPRR5 in pear, have been reported to be strongly correlated with photosynthetic performance under distinct canopy microclimates. However, knowledge concerning the specific expression patterns and roles of pear CCT family genes (PbCCTs) remains very limited. The key roles played by PbCCTs in the light response led us to examine this large gene family in more detail. RESULTS Genome-wide sequence analysis identified 42 putative PbCCTs in the genome of pear (Pyrus bretschneideri Rehd.). Phylogenetic analysis indicated that these genes were divided into five subfamilies, namely, COL (14 members), PRR (8 members), ZIM (6 members), TCR1 (6 members) and ASML2 (8 members). Analysis of exon-intron structures and conserved domains provided support for the classification. Genome duplication analysis indicated that whole-genome duplication/segmental duplication events played a crucial role in the expansion of the CCT family in pear and that the CCT family evolved under the effect of purifying selection. Expression profiles exhibited diverse expression patterns of PbCCTs in various tissues and in response to varying light signals. Additionally, transient overexpression of PbPRR2 in tobacco leaves resulted in inhibition of photosynthetic performance, suggesting its possible involvement in the repression of photosynthesis. CONCLUSIONS This study provides a comprehensive analysis of the CCT gene family in pear and will facilitate further functional investigations of PbCCTs to uncover their biological roles in the light response.
Collapse
Affiliation(s)
- Zheng Liu
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Jia-Li Liu
- College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Lin An
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Tao Wu
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Li Yang
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Yin-Sheng Cheng
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Xian-Shuang Nie
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Zhong-Qi Qin
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| |
Collapse
|