1
|
Li X, Jin D, Yi F, Tang M, Wan S, Fan Y, Xiao Y, Liu T, Li H, Li J, Qiu M, Pei Y. BpAFP, a Broussonetia papyrifera latex chitinase, exhibits a dual role in resisting to both Verticillium wilt disease and lepidopterous pests, Plutella xylostella and Prodenia litura. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112161. [PMID: 38879177 DOI: 10.1016/j.plantsci.2024.112161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Paper mulberry (Broussonetia papyrifera) is a fast-growing tree known for its tolerance to diverse biotic and abiotic stresses. To explore genes combating Verticillium wilt, a devasting and formidable disease damage to cotton and many economically significant crops, we purified an antifungal protein, named BpAFP, from the latex of paper mulberry. Based on peptide fingerprint, we cloned the full cDNA sequence of BpAFP and revealed that BpAFP belongs to Class I chitinases, sharing 74 % identity with B. papyrifera leaf chitinase, PMAPII. We further introduced BpAFP into Arabidopsis, tobacco, and cotton. Transgenic plants exhibited significant resistance to Verticillium wilt. Importantly, BpAFP also demonstrated insecticidal activity against herbivorous pests, Plutella xylostella, and Prodenia litura, when feeding the larvae with transgenic leaves. Our finding unveils a dual role of BpAFP in conferring resistance to both plant diseases and lepidopterous pests.
Collapse
Affiliation(s)
- Xianbi Li
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Dan Jin
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Feifei Yi
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Meng Tang
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Siyi Wan
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Yanhua Fan
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Yuehua Xiao
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Ting Liu
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Hui Li
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Jiancong Li
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Mingliang Qiu
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China
| | - Yan Pei
- Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China.
| |
Collapse
|
2
|
Zhao Y, Yang X, Zhang J, Huang L, Shi Z, Tian Z, Sha A, Lu G. Thaumatin-like protein family genes VfTLP4-3 and VfTLP5 are critical for faba bean's response to drought stress at the seedling stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108243. [PMID: 38048701 DOI: 10.1016/j.plaphy.2023.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Thaumatin-like proteins (TLPs) are a diverse family of pathogenesis-related proteins (PR-5) found in various plant species. Faba bean is an economically important crop known for its nutritional value and resilience to harsh environmental conditions, including drought. In this study, we conducted a comprehensive analysis of the gene structure, phylogenetics, and expression patterns of TLP genes in faba bean, with a specific focus on their response to drought stress. A total of 10 TLP genes were identified and characterized from the faba bean transcriptome, which could be classified into four distinct groups based on their evolutionary relationships. Conserved cysteine residues and REDDD motifs, which are characteristic features of TLPs, were found in most of the identified VfTLP members, and these proteins were likely to reside in the cytoplasm. Two genes, VfTLP4-3 and VfTLP5, exhibited significant upregulation under drought conditions. Additionally, ectopically expressing VfTLP4-3 and VfTLP5 in tobacco leaves resulted in enhanced drought tolerance and increased peroxidase (POD) activity. Moreover, the protein VfTLP4-3 was hypothesized to interact with glycoside hydrolase family 18 (GH18), endochitinase, dehydrin, Barwin, and aldolase, all of which are implicated in chitin metabolism. Conversely, VfTLP5 was anticipated to associate with peptidyl-prolyl cis-trans isomerase-like 3, a molecule linked to the synthesis of proline. These findings suggest that these genes may play crucial roles in mediating the drought response in faba bean through the regulation of these metabolic pathways, and serve as a foundation for future genetic improvement strategies targeting enhanced drought resilience in this economically important crop.
Collapse
Affiliation(s)
- Yongguo Zhao
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, PR China
| | - Xinyu Yang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Jiannan Zhang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China; College of Agriculture, Yangtze University, Jinzhou, 434023, PR China
| | - Liqiong Huang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Zechen Shi
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Zhitao Tian
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430062, PR China.
| | - Aihua Sha
- College of Agriculture, Yangtze University, Jinzhou, 434023, PR China.
| | - Guangyuan Lu
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China.
| |
Collapse
|
3
|
Wang L, Lu H, Zhan J, Shang Q, Wang L, Yin W, Sa W, Liang J. Pathogenesis-related protein-4 (PR-4) gene family in Qingke (Hordeum vulgare L. var. nudum): genome-wide identification, structural analysis and expression profile under stresses. Mol Biol Rep 2022; 49:9397-9408. [PMID: 36008607 DOI: 10.1007/s11033-022-07794-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pathogenesis-related (PR) proteins are active participants of plant defense against biotic and abiotic stresses. The PR-4 family features a Barwin domain at the C-terminus, which endows the host plant with disease resistance. However, comprehensive analysis of PR-4 genes is still lacking in Qingke (Hordeum vulgare L. var. nudum). METHODS AND RESULTS Herein, a total of four PR-4 genes were identified from the genome of Qingke through HMM profiling. Devoid of the chitin-binding domain, these 4 proteins were grouped as class II PR-4s. Phylogenic analysis revealed that 127 PR-4s from 47 species were clustered into 3 major groups, among which the four Qingke PR-4s were claded into group I. Analysis of gene structure demonstrated that no intron was found in 3 out of the 4 Qingke PR-4s, and HOVUSG0928500 was the only gene contained one intron. An array of cis-acting motifs were detected in promoters of Qingke PR-4 genes, including elements associated with hormone response, light response, stress response, growth and development processes and binding sites of transcription factors, implying their diverse role. Expression profiling confirmed that Qingke PR-4s were involved in defense response against drought, cold and powdery mildews infection, and transcription of HOVUSG1974300 and HOVUSG5705400 was differentially regulated by MeJA and SA. CONCLUSION Findings of the study provided insights into the genetic basis of the PR-4 family genes, and would promote further investigation on protein function and utilization.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, 810016, China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, 810016, Xi'ning, China
| | - Hailing Lu
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, 810016, China
| | - Jiarong Zhan
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, 810016, China
| | - Qianhan Shang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, 810016, China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, 810016, Xi'ning, China
| | - Li Wang
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, 810016, Xi'ning, China
| | - Wei Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China
| | - Wei Sa
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China.
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, 810016, China.
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, 810016, Xi'ning, China.
| |
Collapse
|
4
|
Pretreatment with Chitosan Prevents Fusarium Infection and Induces the Expression of Chitinases and β-1,3-Glucanases in Garlic (Allium sativum L.). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fusarium infection decreases the yield of garlic (Allium sativum L.); however, the knowledge about garlic response to fungal attack is limited. Chitosan induces plant defense response to stress conditions. Here, we analyzed the effects of chitosan with low (Ch1, 39 kDa) and medium (Ch2, 135 kDa) molecular weight on Fusarium infection in garlic. Ch1 and Ch2 at concentrations 0.125–0.400 mg/mL suppressed the growth of Fusarium proliferatum cultures in vitro. Pretreatment of garlic bulbs with Ch1 or Ch2 prevented disease symptoms after F. proliferatum inoculation, while exerting early inhibitory and late stimulatory effects on chitinase and β-1,3-glucanase activities. Ch1/Ch2 treatment of garlic already infected with F. proliferatum caused transcriptional upregulation of chitinases and β-1,3-glucanases at the early stage, which was maintained at the late stage in Ch2-treated samples, but not in Ch1-treated samples, where transcriptional inhibition was observed. The stimulatory effect of Ch2 pretreatment on the expression of chitinase and endo-β-1,3-glucanase genes was stronger than that of Ch1 pretreatment, suggesting that Ch2 could be more effective than Ch1 in pre-sowing treatment of garlic bulbs. Our results provide insights into the effects of chitosan on the garlic response to Fusarium, suggesting a novel strategy to protect garlic crop against fungal infection.
Collapse
|
5
|
Franco FP, Túler AC, Gallan DZ, Gonçalves FG, Favaris AP, Peñaflor MFGV, Leal WS, Moura DS, Bento JMS, Silva-Filho MC. Colletotrichum falcatum modulates the olfactory behavior of the sugarcane borer, favoring pathogen infection. FEMS Microbiol Ecol 2022; 98:6554243. [PMID: 35333339 DOI: 10.1093/femsec/fiac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/12/2022] Open
Abstract
Some pathogens can manipulate their host plants and insects to optimize their fitness, increasing the attraction of insects to the infected plant in ways that facilitate pathogen acquisition. In tropical American sugarcane crops, the fungus Colletotrichum falcatum, the red rot causal agent, usually occurs in association with the sugarcane borer Diatraea saccharalis, resulting in large losses of this crop. Considering this association, we aimed to identify the effects of C. falcatum on D. saccharalis host preference and performance as well as the effect of this insect on C. falcatum sugarcane infection. Here, we show that the fungus C. falcatum modulates D. saccharalis behavior to its own benefit. More specifically, C. falcatum-infected sugarcane plants showed a dramatic increase in VOCs, luring D. saccharalis females to lay eggs on these plants. Therefore, sugarcane infection by the fungus C. falcatum increased in cooccurrence with insect herbivory, benefiting the pathogen when associated with D. saccharalis.
Collapse
Affiliation(s)
- Flávia P Franco
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Amanda C Túler
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Diego Z Gallan
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Felipe G Gonçalves
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Arodí P Favaris
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Maria Fernanda G V Peñaflor
- Departamento de Entomologia, Universidade Federal de Lavras, Av. Dr. Sylvio Menicucci, 1001, 37200-000 Lavras, MG, Brazil
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California, One Shields Avenue, 95616 Davis, CA, USA
| | - Daniel S Moura
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - José Maurício S Bento
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Marcio C Silva-Filho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| |
Collapse
|