1
|
Liu J, Meng F, Jiang A, Hou X, Liu Q, Fan H, Chen M. Exogenous 6-BA enhances salt tolerance of Limonium bicolor by increasing the number of salt glands. PLANT CELL REPORTS 2023; 43:12. [PMID: 38135797 DOI: 10.1007/s00299-023-03104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/18/2023] [Indexed: 12/24/2023]
Abstract
KEY MESSAGE Exogenous 6-BA can increase endogenous hormone content, improve photosynthesis, decrease Na+ by increasing leaf salt gland density and salt secretion ability, and reduce ROS content so that it can promote L. bicolor growth. 6-benzyl adenine (6-BA) is an artificial cytokinin and has been widely applied to improving plant adaptation to stress. However, it is rarely reported that 6-BA alleviates salt damage of halophytes. In this paper, we treated Limonium bicolor seedlings, a recretohalophyte with high medicinal and ornamental values, with 300 mM NaCl and different concentrations of 6-BA (0.5, 1.0, and 1.5 mg/L) and measured plant growth, physiological index, the density of salt gland, and the salt secretion ability of leaves. The results showed that exogenous applications 1.0 mg/L 6-BA significantly improved plant growth and photosynthesis, increased cytokinin and auxins contents, K+ and organic soluble matter contents, the activities of SOD, CAT, APX, and POD, and decreased Na+, H2O2, and O2- contents compared to that treated with 300 mM NaCl. Further research showed that exogenous 6-BA significantly increased the density of salt gland and the salt secretion ability of leaves by upregulating the expression of the salt gland developmental genes, therefore, can secrete more excess Na+, and thus reduces the Na+ concentration in leaves, which can alleviate Na+ damage to the species. In all, exogenous 1.0 mg/L 6-BA can increase endogenous hormone, improve photosynthesis, decrease Na+ by increasing secretion ability, and reduce ROS content of L. bicolor so that it can improve the growth. These results above systematically prove the new role of 6-BA in salt tolerance of L. bicolor.
Collapse
Affiliation(s)
- Jing Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Fanxia Meng
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Aijuan Jiang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Xueting Hou
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Qing Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China.
- Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China.
| |
Collapse
|
2
|
Zhao B, Zhou Y, Jiao X, Wang X, Wang B, Yuan F. Bracelet salt glands of the recretohalophyte Limonium bicolor: Distribution, morphology, and induction. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:950-966. [PMID: 36453195 DOI: 10.1111/jipb.13417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Halophytes complete their life cycles in saline environments. The recretohalophyte Limonium bicolor has evolved a specialized salt secretory structure, the salt gland, which excretes Na+ to avoid salt damage. Typical L. bicolor salt glands consist of 16 cells with four fluorescent foci and four secretory pores. Here, we describe a special type of salt gland at the base of the L. bicolor leaf petiole named bracelet salt glands due to their beaded-bracelet-like shape of blue auto-fluorescence. Bracelet salt glands contain more than 16 cells and more than four secretory pores. Leaf disc secretion measurements and non-invasive micro-test techniques indicated that bracelet salt glands secrete more salt than normal salt glands, which helps maintain low Na+ levels at the leaf blade to protect the leaf. Cytokinin treatment induced bracelet salt gland differentiation, and the developed ones showed no further differentiation when traced with a living fluorescence microscopy imager, even though new salt gland development and leaf expansion were observed. Transcriptome revealed a NAC transcription factor gene that participates in bracelet salt gland development, as confirmed by its genome editing and overexpression in L. bicolor. These findings shed light on bracelet salt gland development and may facilitate the engineering of salt-tolerant crops.
Collapse
Affiliation(s)
- Boqing Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Yingli Zhou
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Xiangmei Jiao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Xi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| |
Collapse
|
3
|
Jiao X, Zhao B, Wang B, Yuan F. An uncharacterized gene Lb1G04794 from Limonium bicolor promotes salt tolerance and trichome development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1079534. [PMID: 36570955 PMCID: PMC9773991 DOI: 10.3389/fpls.2022.1079534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Halophytes can grow and reproduce in high-salinity environments, making them an important reservoir of genes conferring salt tolerance. With the expansion of saline soils worldwide, exploring the mechanisms of salt tolerance in halophytes and improving the salt tolerance of crops have become increasingly urgent. Limonium bicolor is a halophyte with salt glands that secrete excess Na+ through leaves. Here, we identified an uncharacterized gene Lb1G04794, which showed increased expression after NaCl treatment and was high during salt gland development in L. bicolor. Overexpression of Lb1G04794 in L. bicolor showed promoted salt gland development, indicating that this gene may promote salt gland differentiation. Transgenic Arabidopsis strains overexpressing Lb1G04794 showed increased trichomes and decreased root hairs under normal conditions. Compared with wild type (WT), root growth in the transgenic lines was less inhibited by NaCl treatment. Transgenic seedlings accumulated less fresh/dry weight reductions under long-term salt treatment, accompanied by lower Na+ and malondialdehyde accumulation than WT, indicating that these transgenic lines behave better growth and undergo less cellular damage under NaCl stress. These results were consistent with the low expression levels of salt-tolerance marker genes in the transgenic lines upon salt stress. We conclude that the unknown gene Lb1G04794 positively regulated salt gland development, and promoted salt tolerance of Arabidopsis, offering a new direction for improving salt tolerance of non-halophytes and crops.
Collapse
Affiliation(s)
| | | | | | - Fang Yuan
- *Correspondence: Baoshan Wang, ; Fang Yuan,
| |
Collapse
|
4
|
Zheng Y, Zong J, Liu J, Wang R, Chen J, Guo H, Kong W, Liu J, Chen Y. Mining for salt-tolerant genes from halophyte Zoysia matrella using FOX system and functional analysis of ZmGnTL. FRONTIERS IN PLANT SCIENCE 2022; 13:1063436. [PMID: 36466287 PMCID: PMC9714509 DOI: 10.3389/fpls.2022.1063436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Zoysia matrella is a salt-tolerant turfgrass grown in areas with high soil salinity irrigated with effluent water. Previous studies focused on explaining the regulatory mechanism of Z. matrella salt-tolerance at phenotypic and physiological levels. However, the molecular mechanism associated with salt tolerance of Z. matrella remained unclear. In this study, a high-efficient method named FOX (full-length cDNA overexpression) hunting system was used to search for salt-tolerant genes in Z. matrella. Eleven candidate genes, including several known or novel salt-tolerant genes involved in different metabolism pathways, were identified. These genes exhibited inducible expression under salt stress condition. Furthermore, a novel salt-inducible candidate gene ZmGnTL was transformed into Arabidopsis for functional analysis. ZmGnTL improved salt-tolerance through regulating ion homeostasis, reactive oxygen species scavenging, and osmotic adjustment. In summary, we demonstrated that FOX is a reliable system for discovering novel genes relevant to salt tolerance and several candidate genes were identified from Z. matrella that can assist molecular breeding for plant salt-tolerance improvement.
Collapse
Affiliation(s)
- Yuying Zheng
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Junqin Zong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jun Liu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Ruying Wang
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Jingbo Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Hailin Guo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Weiyi Kong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yu Chen
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Mir R, Romero I, González-Orenga S, Ferrer-Gallego PP, Laguna E, Boscaiu M, Oprică L, Grigore MN, Vicente O. Constitutive and Adaptive Traits of Environmental Stress Tolerance in the Threatened Halophyte Limonium angustebracteatum Erben (Plumbaginaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091137. [PMID: 35567138 PMCID: PMC9103948 DOI: 10.3390/plants11091137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 06/01/2023]
Abstract
Limonium angustebracteatum is a halophyte endemic to the E and SE Iberian Peninsula with interest in conservation. Salt glands represent an important adaptive trait in recretohalophytes like this and other Limonium species, as they allow the excretion of excess salts, reducing the concentration of toxic ions in foliar tissues. This study included the analysis of the salt gland structure, composed of 12 cells, 4 secretory and 8 accessory. Several anatomical, physiological and biochemical responses to stress were also analysed in adult plants subjected to one month of water stress, complete lack of irrigation, and salt stress, by watering with aqueous solutions of 200, 400, 600 and 800 mM NaCl. Plant growth was inhibited by the severe water deficit and, to a lesser extent, by high NaCl concentrations. A variation in the anatomical structure of the leaves was detected under conditions of salt and water stress; plants from the salt stress treatment showed salt glands sunken between epidermal cells, bordered by very large epidermal cells, whereas in those from the water stress treatment, the epidermal cells were heterogeneous in shape and size. In both, the palisade structure of the leaves was altered. Salt excretion is usually accompanied by the accumulation of salts in the foliar tissue. This was also found in L. angustebracteatum, in which the concentration of all ions analysed was higher in the leaves than in the roots. The increase of K+ in the roots of plants subjected to water stress was also remarkable. The multivariate analysis indicated differences in water and salt stress responses, such as the accumulation of Na and Cl, or proline, but K+ homeostasis played a relevant role in the mechanism of tolerance to both stressful conditions.
Collapse
Affiliation(s)
- Ricardo Mir
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (R.M.); (I.R.); (O.V.)
| | - Ignacio Romero
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (R.M.); (I.R.); (O.V.)
| | - Sara González-Orenga
- Mediterranean Agroforestry Institute (IAM, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (S.G.-O.); (M.B.)
| | - P. Pablo Ferrer-Gallego
- Centre for Forestry Research and Experimentation (CIEF), CIEF-Wildlife Service, Generalitat Valenciana, Avda Comarques del País Valencia, 114, 46930 Quart de Poblet, Valencia, Spain; (P.P.F.-G.); (E.L.)
| | - Emilio Laguna
- Centre for Forestry Research and Experimentation (CIEF), CIEF-Wildlife Service, Generalitat Valenciana, Avda Comarques del País Valencia, 114, 46930 Quart de Poblet, Valencia, Spain; (P.P.F.-G.); (E.L.)
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (S.G.-O.); (M.B.)
| | - Lăcrămioara Oprică
- Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I nr. 11, 700506 Iași, Romania;
| | - Marius-Nicușor Grigore
- Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University of Suceava, Str. Universității 13, 720229 Suceava, Romania
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (R.M.); (I.R.); (O.V.)
| |
Collapse
|