1
|
Yang C, Wang X, Li S, Zhu X, Yu Y, Zhang S. Combined analysis of transcriptomics with metabolomics provides insights into the resistance mechanism in winter jujube using L-Methionine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108951. [PMID: 39047581 DOI: 10.1016/j.plaphy.2024.108951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Black rots lead to great economic losses in winter jujube industry. The objective of this research was to delve into the underlying mechanisms of enhanced resistance of winter jujube fruit to black rot by L-Methionine (Met) treatment. The findings revealed that the application of Met significantly curtailed lesion diameter and decay incidence in winter jujube fruit. The peroxidase (POD) activity in the Met-treated jujubes was 3.06-fold that in the control jujubes after 4 d of treatment. By day 8, the activities of phenylalanine ammonia-lyase (PAL), chitinase (CHI) and β-1,3-glucanase (GLU) in the Met-treated jujubes had surged to their zenith, being 1.39, 1.22, and 1.52 times in the control group, respectively. At the end of storage, the flavonoid and total phenol content remained 1.58 and 1.06 times than that of the control group. Based on metabolomics and transcriptomics analysis, Met treatment upregulated 6 key differentially expressed metabolites (DEMs) (succinic acid, trans-ferulic acid, salicylic acid, delphinium pigments, (S)-abscisic acid, and hesperidin-7-neohesperidin), 12 key differentially expressed genes (DEGs) (PAL, CYP73A, COMT, 4CL, CAD, POD, UGT72E, ANS, CHS, IAA, TCH4 and PR1), which were involved in phenylpropanoid biosynthesis pathway, flavonoid biosynthesis pathway and plant hormone signal transduction pathway. Further analysis revealed that the most of the enzymes, DEMs and DEGs in this study were associated with both antioxidant and disease resistance. Consequently, Met treatment enhanced disease resistance of winter jujube fruit by elevating antioxidant capacity and triggering defense response. This study might provide theoretical support for utilizing Met in the management and prevention of post-harvest black rot in winter jujube.
Collapse
Affiliation(s)
- Chao Yang
- College of Food Science, Shanxi Normal University, Taiyuan, 030000, PR China
| | - Xiaojia Wang
- College of Food Science, Shanxi Normal University, Taiyuan, 030000, PR China
| | - Shengwang Li
- College of Food Science, Shanxi Normal University, Taiyuan, 030000, PR China
| | - Xianran Zhu
- College of Food Science, Shanxi Normal University, Taiyuan, 030000, PR China
| | - Youwei Yu
- College of Food Science, Shanxi Normal University, Taiyuan, 030000, PR China.
| | - Shaoying Zhang
- College of Food Science, Shanxi Normal University, Taiyuan, 030000, PR China.
| |
Collapse
|
2
|
Zhao X, Ge W, Miao Z. Integrative metabolomic and transcriptomic analyses reveals the accumulation patterns of key metabolites associated with flavonoids and terpenoids of Gynostemma pentaphyllum (Thunb.) Makino. Sci Rep 2024; 14:8644. [PMID: 38622163 PMCID: PMC11018608 DOI: 10.1038/s41598-024-57716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Gynostemma pentaphyllum (Thunb.) Makino (G. pentaphyllum) is a medicinal and edible plant with multiple functions of liver protection, anti-tumor, anti-inflammation, balancing blood sugar and blood lipids. The nutritional value of the G. pentaphyllum plant is mainly due to its rich variety of biologically active substances, such as flavonoids, terpenes and polysaccharides. In this study, we performed a comprehensive analysis combining metabolomics and root, stem and leaf transcriptomic data of G. pentaphyllum. We used transcriptomics and metabolomics data to construct a dynamic regulatory network diagram of G. pentaphyllum flavonoids and terpenoids, and screened the transcription factors involved in flavonoids and terpenoids, including basic helix-loop-helix (bHLH), myb-related, WRKY, AP2/ERF. Transcriptome analysis results showed that among the DEGs related to the synthesis of flavonoids and terpenoids, dihydroflavonol 4-reductase (DFR) and geranylgeranyl diphosphate synthases (GGPPS) were core genes. This study presents a dynamic image of gene expression in different tissues of G. pentaphyllum, elucidating the key genes and metabolites of flavonoids and terpenoids. This study is beneficial to a deeper understanding of the medicinal plants of G. pentaphyllum, and also provides a scientific basis for further regulatory mechanisms of plant natural product synthesis pathways and drug development.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Weiwei Ge
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Zhi Miao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
3
|
Gao S, Liu XY, Ni R, Fu J, Tan H, Cheng AX, Lou HX. Molecular cloning and functional analysis of 4-coumarate: CoA ligases from Marchantia paleacea and their roles in lignin and flavanone biosynthesis. PLoS One 2024; 19:e0296079. [PMID: 38190396 PMCID: PMC10773943 DOI: 10.1371/journal.pone.0296079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Phenylpropanoids play important roles in plant physiology and the enzyme 4-coumarate: coenzyme A ligase (4CL) catalyzes the formation of thioesters. Despite extensive characterization in various plants, the functions of 4CLs in the liverwort Marchantia paleacea remain unknown. Here, four 4CLs from M. paleacea were isolated and functionally analyzed. Heterologous expression in Escherichia coli indicated the presence of different enzymatic activities in the four enzymes. Mp4CL1 and Mp4CL2 were able to convert caffeic, p-coumaric, cinnamic, ferulic, dihydro-p-coumaric, and 5-hydroxyferulic acids to their corresponding CoA esters, while Mp4CL3 and Mp4CL4 catalyzed none. Mp4CL1 transcription was induced when M. paleacea thalli were treated with methyl jasmonate (MeJA). The overexpression of Mp4CL1 increased the levels of lignin in transgenic Arabidopsis. In addition, we reconstructed the flavanone biosynthetic pathway in E. coli. The pathway comprised Mp4CL1, co-expressed with chalcone synthase (CHS) from different plant species, and the efficiency of biosynthesis was optimal when both the 4CL and CHS were obtained from the same species M. paleacea.
Collapse
Affiliation(s)
- Shuai Gao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Xin-Yan Liu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Rong Ni
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Jie Fu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Hui Tan
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Jinan, Shan-dong, China
| |
Collapse
|
4
|
Xue JS, Qiu S, Jia XL, Shen SY, Shen CW, Wang S, Xu P, Tong Q, Lou YX, Yang NY, Cao JG, Hu JF, Shen H, Zhu RL, Murray JD, Chen WS, Yang ZN. Stepwise changes in flavonoids in spores/pollen contributed to terrestrial adaptation of plants. PLANT PHYSIOLOGY 2023; 193:627-642. [PMID: 37233029 DOI: 10.1093/plphys/kiad313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023]
Abstract
Protecting haploid pollen and spores against UV-B light and high temperature, 2 major stresses inherent to the terrestrial environment, is critical for plant reproduction and dispersal. Here, we show flavonoids play an indispensable role in this process. First, we identified the flavanone naringenin, which serves to defend against UV-B damage, in the sporopollenin wall of all vascular plants tested. Second, we found that flavonols are present in the spore/pollen protoplasm of all euphyllophyte plants tested and that these flavonols scavenge reactive oxygen species to protect against environmental stresses, particularly heat. Genetic and biochemical analyses showed that these flavonoids are sequentially synthesized in both the tapetum and microspores during pollen ontogeny in Arabidopsis (Arabidopsis thaliana). We show that stepwise increases in the complexity of flavonoids in spores/pollen during plant evolution mirror their progressive adaptation to terrestrial environments. The close relationship between flavonoid complexity and phylogeny and its strong association with pollen survival phenotypes suggest that flavonoids played a central role in the progression of plants from aquatic environments into progressively dry land habitats.
Collapse
Affiliation(s)
- Jing-Shi Xue
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shi Qiu
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Lei Jia
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shi-Yi Shen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chong-Wen Shen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shui Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qi Tong
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Xia Lou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Nai-Ying Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jian-Guo Cao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Ecology and Conservation, Taizhou University, Zhejiang 318000, PR China
| | - Hui Shen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Rui-Liang Zhu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wan-Sheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
5
|
Fu J, Wang PY, Ni R, Zhang JZ, Zhu TT, Tan H, Zhang J, Lou HX, Cheng AX. Molecular identification of a flavone synthase I/flavanone 3β-hydroxylase bifunctional enzyme from fern species Psilotum nudum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111599. [PMID: 36682585 DOI: 10.1016/j.plantsci.2023.111599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The enzyme flavone synthase Is (FNS Is) converts flavanones to flavones, whereas flavanone 3β-hydroxylases (F3Hs) catalyze the formation of dihydroflavonols, a precursor of flavonols and anthocyanins. Canonical F3Hs have been characterized in seed plants, which are evolutionarily related to liverwort FNS Is. However, as important evolutionary lineages between liverworts and seed plants, ferns FNS Is and F3Hs have not been identified. In the present study, we characterized a bifunctional enzyme PnFNS I/F3H from the fern Psilotum nudum. We found that PnFNS I/F3H catalyzed the conversion of naringenin to apigenin and dihydrokaempferol. In addition, it catalyzed five different flavanones to generate the corresponding flavones. Site-directed mutagenesis results indicated that the P228-Y228 mutant protein displayed the FNS I/F2H activity (catalyzing naringenin to generate apigenin and 2-hydroxynaringenin), thus having similar functions as liverwort FNS I/F2H. Moreover, the overexpression of PnFNS I/F3H in Arabidopsis tt6 and dmr6 mutants increased the content of flavones and flavonols in plants, further indicating that PnFNS I/F3H showed FNS I and F3H activities in planta. This is the first study to characterize a bifunctional enzyme FNS I/F3H in ferns. The functional transition from FNS I/F3H to FNS I/F2H will be helpful in further elucidating the relationship between angiosperm F3Hs and liverwort FNS Is.
Collapse
Affiliation(s)
- Jie Fu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Piao-Yi Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Rong Ni
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Jiao-Zhen Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Ting-Ting Zhu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Hui Tan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Jing Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Hong-Xiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Ai-Xia Cheng
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
6
|
Ni R, Liu XY, Zhang JZ, Fu J, Tan H, Zhu TT, Zhang J, Wang HL, Lou HX, Cheng AX. Identification of a flavonoid C-glycosyltransferase from fern species Stenoloma chusanum and the application in synthesizing flavonoid C-glycosides in Escherichia coli. Microb Cell Fact 2022; 21:210. [PMID: 36242071 PMCID: PMC9563126 DOI: 10.1186/s12934-022-01940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flavonoid C-glycosides have many beneficial effects and are widely used in food and medicine. However, plants contain a limited number of flavonoid C-glycosides, and it is challenging to create these substances chemically. RESULTS To screen more robust C-glycosyltransferases (CGTs) for the biosynthesis of flavonoid C-glycosides, one CGT enzyme from Stenoloma chusanum (ScCGT1) was characterized. Biochemical analyses revealed that ScCGT1 showed the C-glycosylation activity for phloretin, 2-hydroxynaringenin, and 2-hydroxyeriodictyol. Structure modeling and mutagenesis experiments indicated that the glycosylation of ScCGT1 may be initiated by the synergistic action of conserved residue His26 and Asp14. The P164T mutation increased C-glycosylation activity by forming a hydrogen bond with the sugar donor. Furthermore, when using phloretin as a substrate, the extracellular nothofagin production obtained from the Escherichia coli strain ScCGT1-P164T reached 38 mg/L, which was 2.3-fold higher than that of the wild-type strain. Finally, it is proved that the coupling catalysis of CjFNS I/F2H and ScCGT1-P164T could convert naringenin into vitexin and isovitexin. CONCLUSION This is the first time that C-glycosyltransferase has been characterized from fern species and provides a candidate gene and strategy for the efficient production of bioactive C-glycosides using enzyme catalysis and metabolic engineering.
Collapse
Affiliation(s)
- Rong Ni
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xin-Yan Liu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jiao-Zhen Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jie Fu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hui Tan
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jing Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hai-Long Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
7
|
Ni R, Niu M, Fu J, Tan H, Zhu TT, Zhang J, Lou HX, Zhang P, Li JX, Cheng AX. Molecular and structural characterization of a promiscuous chalcone synthase from the fern species Stenoloma chusanum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1935-1951. [PMID: 35920566 DOI: 10.1111/jipb.13335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The key enzymes involved in the flavonoid biosynthesis pathway have been extensively studied in seed plants, but relatively less in ferns. In this study, two 4-Coumarate: coenzyme A ligases (Sc4CL1 and Sc4CL2) and one novel chalcone synthase (ScCHS1) were functionally characterized by mining the Stenoloma chusanum transcriptome database. Recombinant Sc4CLs were able to esterify various hydroxycinnamic acids to corresponding acyl-coenzyme A (CoA). ScCHS1 could catalyze p-coumaroyl-CoA, cinnamoyl-CoA, caffeoyl-CoA, and feruloyl-CoA to form naringenin, pinocembrin, eriodictyol, and homoeriodictyol, respectively. Moreover, enzymatic kinetics studies revealed that the optimal substrates of ScCHS1 were feruloyl-CoA and caffeoyl-CoA, rather than p-coumaroyl-CoA, which was substantially different from the common CHSs. Crystallographic and site-directed mutagenesis experiments indicated that the amino acid residues, Leu87, Leu97, Met165, and Ile200, located in the substrate-binding pocket near the B-ring of products, could exert a significant impact on the unique catalytic activity of ScCHS1. Furthermore, overexpression of ScCHS1 in tt4 mutants could partially rescue the mutant phenotypes. Finally, ScCHS1 and Sc4CL1 were used to synthesize flavanones and flavones with multi-substituted hydroxyl and methoxyl B-ring in Escherichia coli, which can effectively eliminate the need for the cytochrome P450 hydroxylation/O-methyltransferase from simple phenylpropanoid acids. In summary, the identification of these important Stenoloma enzymes provides a springboard for the future production of various flavonoids in E. coli.
Collapse
Affiliation(s)
- Rong Ni
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Meng Niu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Jie Fu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Hui Tan
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Jing Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Xu Li
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| |
Collapse
|