1
|
Zhang K, Qu G, Zhang Y, Liu J. Assembly and comparative analysis of the first complete mitochondrial genome of Astragalus membranaceus (Fisch.) Bunge: an invaluable traditional Chinese medicine. BMC PLANT BIOLOGY 2024; 24:1055. [PMID: 39511474 PMCID: PMC11546474 DOI: 10.1186/s12870-024-05780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Astragalus membranaceus (Fisch.) Bunge is one of the most well-known tonic herbs in traditional Chinese medicine, renowned for its remarkable medicinal value in various clinical contexts. The corresponding chloroplast (cp) and nuclear genomes have since been accordingly sequenced, providing valuable information for breeding and phylogeny studies. However, the mitochondrial genome (mitogenome) of A. membranaceus remains unexplored, which hinders comprehensively understanding the evolution of its genome. RESULTS For this study, we de novo assembled the mitogenome of A. membranaceus (Fisch.) Bunge var. mongholicus (Bunge) P. K. Hsiao using a strategy integrating Illumina and Nanopore sequencing technology and subsequently performed comparative analysis with its close relatives. The mitogenome has a multi-chromosome structure, consisting of two circular chromosomes with a total length of 398,048 bp and an overall GC content of 45.3%. It encodes 54 annotated functional genes, comprising 33 protein-coding genes (PCGs), 18 tRNA genes, and 3 rRNA genes. An investigation of codon usage in the PCGs revealed an obvious preference for codons ending in A or U (T) bases, given their high frequency. RNA editing identified 500 sites in the coding regions of mt PCGs that exhibit a perfect conversion of the base C to U, a process that tends to lead to the conversion of hydrophilic amino acids into hydrophobic amino acids. From the mitogenome analysis, a total of 399 SSRs, 4 tandem repeats, and 77 dispersed repeats were found, indicating that A. membranaceus possesses fewer repeats compared to its close relatives with similarly sized mitogenomes. Selection pressure analysis indicated that most mt PCGs were purifying selection genes, while only five PCGs (ccmB, ccmFc, ccmFn, nad3, and nad9) were positive selection genes. Notably, positive selection emerged as a critical factor in the evolution of ccmB and nad9 in all the pairwise species comparisons, suggesting the extremely critical role of these genes in the evolution of A. membranaceus. Moreover, we inferred that 22 homologous fragments have been transferred from cp to mitochondria (mt), in which 5 cp-derived tRNA genes remain intact in the mitogenome. Further comparative analysis revealed that the syntenic region and mt gene organization are relatively conserved within the provided legumes. The comparison of gene content indicated that the gene composition of Fabaceae mitogenomes differed. Finally, the phylogenetic tree established from analysis is largely congruent with the taxonomic relationships of Fabaceae species and highlights the close relationship between Astragalus and Oxytropis. CONCLUSIONS We provide the first report of the assembled and annotated A. membranaceus mitogenome, which enriches the genetic resources available for the Astragalus genus and lays the foundation for comprehensive exploration of this invaluable medicinal plant.
Collapse
Affiliation(s)
- Kun Zhang
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China.
- Key Laboratory of Organic Dry Farming for Special Crops in Datong City, Datong, Shanxi, China.
| | - Gaoyang Qu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yue Zhang
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China
| | - Jianxia Liu
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China
- Key Laboratory of Organic Dry Farming for Special Crops in Datong City, Datong, Shanxi, China
| |
Collapse
|
2
|
Xie DF, Li J, Sun JH, Cheng RY, Wang Y, Song BN, He XJ, Zhou SD. Peering through the hedge: Multiple datasets yield insights into the phylogenetic relationships and incongruences in the tribe Lilieae (Liliaceae). Mol Phylogenet Evol 2024; 200:108182. [PMID: 39222738 DOI: 10.1016/j.ympev.2024.108182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The increasing use of genome-scale data has significantly facilitated phylogenetic analyses, contributing to the dissection of the underlying evolutionary mechanisms that shape phylogenetic incongruences, such as incomplete lineage sorting (ILS) and hybridization. Lilieae, a prominent member of the Liliaceae family, comprises four genera and approximately 260 species, representing 43% of all species within Liliaceae. They possess high ornamental, medicinal and edible values. Yet, no study has explored the validity of various genome-scale data in phylogenetic analyses within this tribe, nor have potential evolutionary mechanisms underlying its phylogenetic incongruences been investigated. Here, transcriptome, Angiosperms353, plastid and mitochondrial data, were collected from 50 to 93 samples of Lilieae, covering all four recognized genera. Multiple datasets were created and used for phylogenetic analyses based on concatenated and coalescent-based methods. Evolutionary rates of different datasets were calculated, and divergence times were estimated. Various approaches, including coalescence simulation, Quartet Sampling (QS), calculation of concordance factors (gCF and sCF), as well as MSCquartets and reticulate network inference, were carried out to infer the phylogenetic discordances and analyze their underlying mechanisms using a reduced 33-taxon dataset. Despite extensive phylogenetic discordances among gene trees, robust phylogenies were inferred from nuclear and plastid data compared to mitochondrial data, with lower synonymous substitution detected in mitochondrial genes than in nuclear and plastid genes. Significant ILS was detected across the phylogeny of Lilieae, with clear evidence of reticulate evolution identified. Divergence time estimation indicated that most of lineages in Lilieae diverged during a narrow time frame (ranging from 5.0 Ma to 10.0 Ma), consistent with the notion of rapid radiation evolution. Our results suggest that integrating transcriptomic and plastid data can serve as cost-effective and efficient tools for phylogenetic inference and evolutionary analysis within Lilieae, and Angiosperms353 data is also a favorable choice. Mitochondrial data are more suitable for phylogenetic analyses at higher taxonomic levels due to their stronger conservation and lower synonymous substitution rates. Significant phylogenetic incongruences detected in Lilieae were caused by both incomplete lineage sorting (ILS) and reticulate evolution, with hybridization and "ghost introgression" likely prevalent in the evolution of Lilieae species. Our findings provide new insights into the phylogeny of Lilieae, enhancing our understanding of the evolution of species in this tribe.
Collapse
Affiliation(s)
- Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China.
| | - Juan Li
- Southwest Minzu University, Institute Of Qinghai-Tibetan Plateau, 610225 Chengdu, Sichuan, PR China
| | - Jia-Hui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Rui-Yu Cheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Yuan Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China.
| |
Collapse
|
3
|
Tu XD, Xin YX, Fu HH, Zhou CY, Liu QL, Tang XH, Zou LH, Liu ZJ, Chen SP, Lin WJ, Li MH. The complete mitochondrial genome of Castanopsis carlesii and Castanea henryi reveals the rearrangement and size differences of mitochondrial DNA molecules. BMC PLANT BIOLOGY 2024; 24:988. [PMID: 39428457 PMCID: PMC11492686 DOI: 10.1186/s12870-024-05618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Castanopsis carlesii is a dominant tree species in subtropical evergreen broad-leaved forests and holds significant ecological value. It serves as an excellent timber tree species and raw material for cultivating edible fungi. Henry Chinquapin (Castanea henryi) wood is known for its hardness and resistance to water and moisture, making it an exceptional timber species. Additionally, its fruit has a sweet and fruity taste, making it a valuable food source. However, the mitogenomes of these species have not been previously reported. To gain a better understanding of them, this study successfully assembled high-quality mitogenomes of C. carlesii and Ca. henryi for the first time. RESULTS Our research reveals that the mitochondrial DNA (mtDNA) of C. carlesii exhibits a unique multi-branched conformation, while Ca. henryi primarily exists in the form of two independent molecules that can be further divided into three independent molecules through one pair of long repetitive sequences. The size of the mitogenomes of C. carlesii and Ca. henryi are 592,702 bp and 379,929 bp respectively, which are currently the largest and smallest Fagaceae mitogenomes recorded thus far. The primary factor influencing mitogenome size is dispersed repeats. Comparison with published mitogenomes from closely related species highlights differences in size, gene loss patterns, codon usage preferences, repetitive sequences, as well as mitochondrial plastid DNA segments (MTPTs). CONCLUSIONS Our study enhances the understanding of mitogenome structure and evolution in Fagaceae, laying a crucial foundation for future research on cell respiration, disease resistance, and other traits in this family.
Collapse
Affiliation(s)
- Xiong-De Tu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ya-Xuan Xin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hou-Hua Fu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cheng-Yuan Zhou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing-Long Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xing-Hao Tang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shi-Pin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wen-Jun Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Ming-He Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Zheng Q, Luo X, Huang Y, Ke SJ, Liu ZJ. The Complete Mitogenome of Apostasia fujianica Y.Li & S.Lan and Comparative Analysis of Mitogenomes across Orchidaceae. Int J Mol Sci 2024; 25:8151. [PMID: 39125719 PMCID: PMC11311346 DOI: 10.3390/ijms25158151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Apostasia fujianica belongs to the genus Apostasia and is part of the basal lineage in the phylogenetic tree of the Orchidaceae. Currently, there are only ten reported complete mitochondrial genomes in orchids, which greatly hinders the understanding of mitochondrial evolution in Orchidaceae. Therefore, we assembled and annotated the mitochondrial genome of A. fujianica, which has a length of 573,612 bp and a GC content of 44.5%. We annotated a total of 44 genes, including 30 protein-coding genes, 12 tRNA genes, and two rRNA genes. We also performed relative synonymous codon usage (RSCU) analysis, repeat sequence analysis, intergenomic transfer (IGT) analysis, and Ka/Ks analysis for A. fujianica and conducted RNA editing site analysis on the mitochondrial genomes of eight orchid species. We found that most protein-coding genes are under purifying selection, but nad6 is under positive selection, with a Ka/Ks value of 1.35. During the IGT event in A. fujianica's mitogenome, the trnN-GUU, trnD-GUC, trnW-CCA, trnP-UGG, and psaJ genes were identified as having transferred from the plastid to the mitochondrion. Compared to other monocots, the family Orchidaceae appears to have lost the rpl10, rpl14, sdh3, and sdh4 genes. Additionally, to further elucidate the evolutionary relationships among monocots, we constructed a phylogenetic tree based on the complete mitogenomes of monocots. Our study results provide valuable data on the mitogenome of A. fujianica and lay the groundwork for future research on genetic variation, evolutionary relationships, and breeding of Orchidaceae.
Collapse
Affiliation(s)
- Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoting Luo
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shi-Jie Ke
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Liu D, Qu K, Yuan Y, Zhao Z, Chen Y, Han B, Li W, El-Kassaby YA, Yin Y, Xie X, Tong B, Liu H. Complete sequence and comparative analysis of the mitochondrial genome of the rare and endangered Clematis acerifolia, the first clematis mitogenome to provide new insights into the phylogenetic evolutionary status of the genus. Front Genet 2023; 13:1050040. [PMID: 36761694 PMCID: PMC9907779 DOI: 10.3389/fgene.2022.1050040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Clematis is one of the large worldwide genera of the Ranunculaceae Juss. Family, with high ornamental and medicinal value. China is the modern distribution centre of Clematis with abundant natural populations. Due to the complexity and high morphological diversity of Clematis, the genus is difficult to classify systematically, and in particular, the phylogenetic position of the endangered Clematis acerifolia is highly controversial. The use of the mitochondrial complete genome is a powerful molecular method that is frequently used for inferring plants phylogenies. However, studies on Clematis mitogenome are rare, thus limiting our full understanding of its phylogeny and genome evolution. Here, we sequenced and annotated the C. acerifolia mt genome using Illumina short- and Nanopore long-reads, characterized the species first complete mitogenome, and performed a comparative phylogenetic analysis with its close relatives. The total length of the C. acerifolia mitogenome is 698,247 bp and the main structure is multi-branched (linear molecule 1 and circular molecule 2). We annotated 55 genes, including 35 protein-coding, 17 tRNA, and 3 rRNA genes. The C. acerifolia mitogenome has extremely unconserved structurally, with extensive sequence transfer between the chloroplast and mitochondrial organelles, sequence repeats, and RNA editing. The phylogenetic position of C. acerifolia was determined by constructing the species mitogenome with 24 angiosperms. Further, our C. acerifolia mitogenome characteristics investigation included GC contents, codon usage, repeats and synteny analysis. Overall, our results are expected to provide fundamental information for C. acerifolia mitogenome evolution and confirm the validity of mitochondrial analysis in determining the phylogenetic positioning of Clematis plants.
Collapse
Affiliation(s)
- Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China,State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kai Qu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yangchen Yuan
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China,Hebei Hongya Mountain State-Owned Forest Farm, Baoding, China
| | - Zhiheng Zhao
- Guangxi Forestry Research Institute, Guangxi Key Laboratory of Special Non-wood Forest Cultivation &; Utilization, Nanning, China
| | - Ying Chen
- Forestry Protection and Development Service Center of Shandong Province, Jinan, China
| | - Biao Han
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, Canada
| | | | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China,*Correspondence: Xiaoman Xie, ; Boqiang Tong, ; Hongshan Liu,
| | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China,*Correspondence: Xiaoman Xie, ; Boqiang Tong, ; Hongshan Liu,
| | - Hongshan Liu
- Hebei Hongya Mountain State-Owned Forest Farm, Baoding, China,*Correspondence: Xiaoman Xie, ; Boqiang Tong, ; Hongshan Liu,
| |
Collapse
|
6
|
Lin Y, Li P, Zhang Y, Akhter D, Pan R, Fu Z, Huang M, Li X, Feng Y. Unprecedented organelle genomic variations in morning glories reveal independent evolutionary scenarios of parasitic plants and the diversification of plant mitochondrial complexes. BMC Biol 2022; 20:49. [PMID: 35172831 PMCID: PMC8851834 DOI: 10.1186/s12915-022-01250-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/08/2022] [Indexed: 01/01/2023] Open
Abstract
Background The morning glories (Convolvulaceae) are distributed worldwide and produce economically important crops, medicinal herbs, and ornamentals. Members of this family are diverse in morphological characteristics and trophic modes, including the leafless parasitic Cuscuta (dodders). Organelle genomes were generally used for studying plant phylogeny and genomic variations. Notably, plastomes in parasitic plants always show non-canonical features, such as reduced size and accelerated rates. However, few organelle genomes of this group have been sequenced, hindering our understanding of their evolution, and dodder mitogenome in particular. Results We assembled 22 new mitogenomes and 12 new plastomes in Convolvulaceae. Alongside previously known ones, we totally analyzed organelle genomes of 23 species in the family. Our sampling includes 16 leafy autotrophic species and 7 leafless parasitic dodders, covering 8 of the 12 tribes. Both the plastid and mitochondrial genomes of these plants have encountered variations that were rarely observed in other angiosperms. All of the plastomes possessed atypical IR boundaries. Besides the gene and IR losses in dodders, some leafy species also showed gene and intron losses, duplications, structural variations, and insertions of foreign DNAs. The phylogeny reconstructed by plastid protein coding sequences confirmed the previous relationship of the tribes. However, the monophyly of ‘Merremieae’ and the sister group of Cuscuta remained uncertain. The mitogenome was significantly inflated in Cuscuta japonica, which has exceeded over 800 kb and integrated massive DNAs from other species. In other dodders, mitogenomes were maintained in small size, revealing divergent evolutionary strategies. Mutations unique to plants were detected in the mitochondrial gene ccmFc, which has broken into three fragments through gene fission and splicing shift. The unusual changes likely initially happened to the common ancestor of the family and were caused by a foreign insertion from rosids followed by double-strand breaks and imprecise DNA repairs. The coding regions of ccmFc expanded at both sides after the fission, which may have altered the protein structure. Conclusions Our family-scale analyses uncovered unusual scenarios for both organelle genomes in Convolvulaceae, especially in parasitic plants. The data provided valuable genetic resources for studying the evolution of Convolvulaceae and plant parasitism. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01250-1.
Collapse
Affiliation(s)
- Yanxiang Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Pan Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yuchan Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Delara Akhter
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet Division 3100, Sylhet, Bangladesh
| | - Ronghui Pan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Zhixi Fu
- College of Life Science, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Mingqing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Xiaobo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Yanlei Feng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China. .,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|