1
|
Su T, Liu H, Wu Y, Wang J, He F, Li H, Li S, Wang L, Li L, Cao J, Lu Q, Zhao X, Xiang H, Lin C, Lu S, Liu B, Kong F, Fang C. Soybean hypocotyl elongation is regulated by a MYB33-SWEET11/21-GA2ox8c module involving long-distance sucrose transport. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2859-2872. [PMID: 38861663 PMCID: PMC11536460 DOI: 10.1111/pbi.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
The length of hypocotyl affects the height of soybean and lodging resistance, thus determining the final grain yield. However, research on soybean hypocotyl length is scarce, and the regulatory mechanisms are not fully understood. Here, we identified a module controlling the transport of sucrose, where sucrose acts as a messenger moved from cotyledon to hypocotyl, regulating hypocotyl elongation. This module comprises four key genes, namely MYB33, SWEET11, SWEET21 and GA2ox8c in soybean. In cotyledon, MYB33 is responsive to sucrose and promotes the expression of SWEET11 and SWEET21, thereby facilitating sucrose transport from the cotyledon to the hypocotyl. Subsequently, sucrose transported from the cotyledon up-regulates the expression of GA2ox8c in the hypocotyl, which ultimately affects the length of the hypocotyl. During the domestication and improvement of soybean, an allele of MYB33 with enhanced abilities to promote SWEET11 and SWEET21 has gradually become enriched in landraces and cultivated varieties, SWEET11 and SWEET21 exhibit high conservation and have undergone a strong purified selection and GA2ox8c is under a strong artificial selection. Our findings identify a new molecular pathway in controlling soybean hypocotyl elongation and provide new insights into the molecular mechanism of sugar transport in soybean.
Collapse
Affiliation(s)
- Tong Su
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Huan Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Yichun Wu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Jianhao Wang
- Vegetables Research Institute, Guangdong Academy of Agricultural SciencesGuangdong Key Laboratory for New Technology Research of VegetablesGuangzhouChina
| | - Fanglei He
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
- Institute of Improvement and Utilization of Characteristic Resource Plants, College of Agriculture and BiotechnologyYunnan Agricultural UniversityKunmingChina
| | - Haiyang Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Shichen Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Lingshuang Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Lanxin Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Jie Cao
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Qiulian Lu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Xiaohui Zhao
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Hongtao Xiang
- Heilongjiang Academy of Agricultural SciencesHarbinChina
- Suihua Branch, Heilongjiang Academy of Agricultural Machinery SciencesSuihuaChina
| | - Chun Lin
- Institute of Improvement and Utilization of Characteristic Resource Plants, College of Agriculture and BiotechnologyYunnan Agricultural UniversityKunmingChina
| | - Sijia Lu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| |
Collapse
|
2
|
Bao G, Sun G, Wang J, Shi T, Xu X, Zhai L, Bian S, Li X. Soybean RVE8a confers salt and drought tolerance in Arabidopsis. Biochem Biophys Res Commun 2024; 704:149660. [PMID: 38428303 DOI: 10.1016/j.bbrc.2024.149660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
Soybean is an economically important crop, which often suffers various abiotic stresses. REVEILLE (RVE) genes have been generally considered as circadian oscillators to mediate diverse developmental processes and plant response to environmental stresses. Addressing their roles is of significance for utilizing them to enhance agronomic traits in crops. However, our understanding of soybean RVEs is extremely limited. In the study, we investigated the expression patterns of soybean CCA1-like genes under salt stress using our RNA-Seq data. Subsequently, a salt stress-inducible gene, GmRVE8a, was chosen for further study. Phylogenetic analysis indicated that GmRVE8a is most closely related to Arabidopsis RVE4 and RVE8. Also, GmRVE8a showed circadian expression pattern with 24 h rhythmic period, suggesting that it might be a clock-regulated gene. Moreover, transgenic Arabidopsis lines over-expressing GmRVE8a were generated. It was observed that ectopic over-expression of GmRVE8a caused a significant delay in flowering. Further observation indicated that under salt and drought stress, transgenic seedlings were stronger than wild type. Consistently, three-week-old transgenic plants grew better than wild type under salt and drought conditions, and the MDA content in transgenic lines was significantly lower than wild type, suggesting that GmRVE8a might be a positive regulator in response to salt and drought stress. Intriguingly, Y2H assay indicated that GmRVE8a physically interacted with a drought-tolerant protein, GmNAC17. Overall, our findings provided preliminary information regarding the functional roles of GmRVE8a in response to salt and drought stress.
Collapse
Affiliation(s)
- Guohua Bao
- College of Plant Science, Jilin University, Changchun, 130062, Jilin, China
| | - Guoqing Sun
- College of Plant Science, Jilin University, Changchun, 130062, Jilin, China
| | - Jingying Wang
- College of Plant Science, Jilin University, Changchun, 130062, Jilin, China
| | - Tianran Shi
- College of Plant Science, Jilin University, Changchun, 130062, Jilin, China
| | - Xiao Xu
- College of Plant Science, Jilin University, Changchun, 130062, Jilin, China
| | - Lulu Zhai
- College of Plant Science, Jilin University, Changchun, 130062, Jilin, China
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, 130062, Jilin, China.
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
3
|
Wang C, Li X, Zhuang Y, Sun W, Cao H, Xu R, Kong F, Zhang D. A novel miR160a-GmARF16-GmMYC2 module determines soybean salt tolerance and adaptation. THE NEW PHYTOLOGIST 2024; 241:2176-2192. [PMID: 38135657 DOI: 10.1111/nph.19503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023]
Abstract
Salt stress is a major challenge that has a negative impact on soybean growth and productivity. Therefore, it is important to understand the regulatory mechanism of salt response to ensure soybean yield under such conditions. In this study, we identified and characterized a miR160a-GmARF16-GmMYC2 module and its regulation during the salt-stress response in soybean. miR160a promotes salt tolerance by cleaving GmARF16 transcripts, members of the Auxin Response Factor (ARF) family, which negatively regulates salt tolerance. In turn, GmARF16 activates GmMYC2, encoding a bHLH transcription factor that reduces salinity tolerance by down-regulating proline biosynthesis. Genomic analysis among wild and cultivated soybean accessions identified four distinct GmARF16 haplotypes. Among them, the GmARF16H3 haplotype is preferentially enriched in localities with relatively saline soils, suggesting GmARF16H3 was artificially selected to improve salt tolerance. Our findings therefore provide insights into the molecular mechanisms underlying salt response in soybean and provide valuable genetic targets for the molecular breeding of salt tolerance.
Collapse
Affiliation(s)
- Chaofan Wang
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaoming Li
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yongbin Zhuang
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Wancai Sun
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Hongxiang Cao
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, 250131, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Dajian Zhang
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
4
|
Zhang X, Shen Z, Sun X, Chen M, Zhang N. Integrated analysis of transcriptomic and proteomic data reveals novel regulators of soybean ( Glycine max) hypocotyl development. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:1086-1098. [PMID: 37866377 DOI: 10.1071/fp23013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
Hypocotyl elongation directly affects the seedling establishment and soil-breaking after germination. In soybean (Glycine max ), the molecular mechanisms regulating hypocotyl development remain largely elusive. To decipher the regulatory landscape, we conducted proteome and transcriptome analysis of soybean hypocotyl samples at different development stages. Our results showed that during hypocotyl development, many proteins were with extreme high translation efficiency (TE) and may act as regulators. These potential regulators include multiple peroxidases and cell wall reorganisation related enzymes. Peroxidases may produce ROS including H2 O2 . Interestingly, exogenous H2 O2 application promoted hypocotyl elongation, supporting peroxidases as regulators of hypocotyl development. However, a vast variety of proteins were shown to be with dramatically changed TE during hypocotyl development, including multiple phytochromes, plasma membrane intrinsic proteins (PIPs) and aspartic proteases. Their potential roles in hypocotyl development were confirmed by that ectopic expression of GmPHYA1 and GmPIP1-6 in Arabidopsis thaliana affected hypocotyl elongation. In addition, the promoters of these potential regulatory genes contain multiple light/gibberellin/auxin responsive elements, while the expression of some members in hypocotyls was significantly regulated by light and exogenous auxin/gibberellin. Overall, our results revealed multiple novel regulatory factors of soybean hypocotyl elongation. Further research on these regulators may lead to new approvals to improve soybean hypocotyl traits.
Collapse
Affiliation(s)
- Xueliang Zhang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Zhikang Shen
- Sanya Institute, Henan University, Sanya, China; and State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Xiaohu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Min Chen
- Sanya Institute, Henan University, Sanya, China; and State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Naichao Zhang
- School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
5
|
Leung HS, Chan LY, Law CH, Li MW, Lam HM. Twenty years of mining salt tolerance genes in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:45. [PMID: 37313223 PMCID: PMC10248715 DOI: 10.1007/s11032-023-01383-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/12/2023] [Indexed: 06/15/2023]
Abstract
Current combined challenges of rising food demand, climate change and farmland degradation exert enormous pressure on agricultural production. Worldwide soil salinization, in particular, necessitates the development of salt-tolerant crops. Soybean, being a globally important produce, has its genetic resources increasingly examined to facilitate crop improvement based on functional genomics. In response to the multifaceted physiological challenge that salt stress imposes, soybean has evolved an array of defences against salinity. These include maintaining cell homeostasis by ion transportation, osmoregulation, and restoring oxidative balance. Other adaptations include cell wall alterations, transcriptomic reprogramming, and efficient signal transduction for detecting and responding to salt stress. Here, we reviewed functionally verified genes that underly different salt tolerance mechanisms employed by soybean in the past two decades, and discussed the strategy in selecting salt tolerance genes for crop improvement. Future studies could adopt an integrated multi-omic approach in characterizing soybean salt tolerance adaptations and put our existing knowledge into practice via omic-assisted breeding and gene editing. This review serves as a guide and inspiration for crop developers in enhancing soybean tolerance against abiotic stresses, thereby fulfilling the role of science in solving real-life problems. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01383-3.
Collapse
Affiliation(s)
- Hoi-Sze Leung
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Long-Yiu Chan
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Cheuk-Hin Law
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Man-Wah Li
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000 People’s Republic of China
| |
Collapse
|
6
|
Shan B, Bao G, Shi T, Zhai L, Bian S, Li X. Genome-wide identification of BBX gene family and their expression patterns under salt stress in soybean. BMC Genomics 2022; 23:820. [PMID: 36510141 PMCID: PMC9743715 DOI: 10.1186/s12864-022-09068-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND BBX genes are key players in the regulation of various developmental processes and stress responses, which have been identified and functionally characterized in many plant species. However, our understanding of BBX family was greatly limited in soybean. RESULTS In this study, 59 BBX genes were identified and characterized in soybean, which can be phylogenetically classified into 5 groups. GmBBXs showed diverse gene structures and motif compositions among the groups and similar within each group. Noticeably, synteny analysis suggested that segmental duplication contributed to the expansion of GmBBX family. Moreover, our RNA-Seq data indicated that 59 GmBBXs showed different transcript profiling under salt stress, and qRT-PCR analysis confirmed their expression patterns. Among them, 22 GmBBXs were transcriptionally altered with more than two-fold changes by salt stress, supporting that GmBBXs play important roles in soybean tolerance to salt stress. Additionally, Computational assay suggested that GmBBXs might potentially interact with GmGI3, GmTOE1b, GmCOP1, GmCHI and GmCRY, while eight types of transcription factors showed potentials to bind the promoter regions of GmBBX genes. CONCLUSIONS Fifty-nine BBX genes were identified and characterized in soybean, and their expression patterns under salt stress and computational assays suggested their functional roles in response to salt stress. These findings will contribute to future research in regard to functions and regulatory mechanisms of soybean BBX genes in response to salt stress.
Collapse
Affiliation(s)
- Binghui Shan
- grid.64924.3d0000 0004 1760 5735College of Plant Science, Jilin University, Changchun, China
| | - Guohua Bao
- grid.64924.3d0000 0004 1760 5735College of Plant Science, Jilin University, Changchun, China
| | - Tianran Shi
- grid.64924.3d0000 0004 1760 5735College of Plant Science, Jilin University, Changchun, China
| | - Lulu Zhai
- grid.64924.3d0000 0004 1760 5735College of Plant Science, Jilin University, Changchun, China
| | - Shaomin Bian
- grid.64924.3d0000 0004 1760 5735College of Plant Science, Jilin University, Changchun, China
| | - Xuyan Li
- grid.64924.3d0000 0004 1760 5735College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|