1
|
Wang X, Meng Y, Zhang S, Wang Z, Zhang K, Gao T, Ma Y. Characterization of bZIP Transcription Factors in Transcriptome of Chrysanthemum mongolicum and Roles of CmbZIP9 in Drought Stress Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2064. [PMID: 39124182 PMCID: PMC11314283 DOI: 10.3390/plants13152064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
bZIP transcription factors play important roles in regulating plant development and stress responses. Although bZIPs have been identified in many plant species, there is little information on the bZIPs in Chrysanthemum. In this study, bZIP TFs were identified from the leaf transcriptome of C. mongolicum, a plant naturally tolerant to drought. A total of 28 full-length bZIP family members were identified from the leaf transcriptome of C. mongolicum and were divided into five subfamilies based on their phylogenetic relationships with the bZIPs from Arabidopsis. Ten conserved motifs were detected among the bZIP proteins of C. mongolicum. Subcellular localization assays revealed that most of the CmbZIPs were predicted to be localized in the nucleus. A novel bZIP gene, designated as CmbZIP9, was cloned based on a sequence of the data of the C. mongolicum transcriptome and was overexpressed in tobacco. The results indicated that the overexpression of CmbZIP9 reduced the malondialdehyde (MDA) content and increased the peroxidase (POD) and superoxide dismutase (SOD) activities as well as the expression levels of stress-related genes under drought stress, thus enhancing the drought tolerance of transgenic tobacco lines. These results provide a theoretical basis for further exploring the functions of the bZIP family genes and lay a foundation for stress resistance improvement in chrysanthemums in the future.
Collapse
Affiliation(s)
- Xuan Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Yuan Meng
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Shaowei Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Zihan Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Kaimei Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China;
| | - Tingting Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Yueping Ma
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| |
Collapse
|
2
|
Wu J, Zhou M, Cheng Y, Chen X, Yan S, Deng S. Genome-Wide Analysis of C/S1-bZIP Subfamilies in Populus tomentosa and Unraveling the Role of PtobZIP55/21 in Response to Low Energy. Int J Mol Sci 2024; 25:5163. [PMID: 38791204 PMCID: PMC11120861 DOI: 10.3390/ijms25105163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
C/S1 basic leucine zipper (bZIP) transcription factors are essential for plant survival under energy deficiency. However, studies on the responses of C/S1-bZIPs to low energy in woody plants have not yet been reported. In this study, members of C/S1-bZIP subfamilies in Populus tomentosa were systematically analyzed using bioinformatic approaches. Four C-bZIPs and 10 S1-bZIPs were identified, and their protein properties, phylogenetic relationships, gene structures, conserved motifs, and uORFs were systematically investigated. In yeast two-hybrid assays, direct physical interactions between C-bZIP and S1-bZIP members were observed, highlighting their potential functional synergy. Moreover, expression profile analyses revealed that low energy induced transcription levels of most C/S1-bZIP members, with bZIP55 and bZIP21 (a homolog of bZIP55) exhibiting particularly significant upregulation. When the expression of bZIP55 and bZIP21 was co-suppressed using artificial microRNA mediated gene silencing in transgenic poplars, root growth was promoted. Further analyses revealed that bZIP55/21 negatively regulated the root development of P. tomentosa in response to low energy. These findings provide insights into the molecular mechanisms by which C/S1-bZIPs regulate poplar growth and development in response to energy deprivation.
Collapse
Affiliation(s)
| | | | | | | | | | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (J.W.); (M.Z.); (Y.C.); (X.C.); (S.Y.)
| |
Collapse
|
3
|
Chen Y, Wu X, Wang X, Li Q, Yin H, Zhang S. bZIP transcription factor PubZIP914 enhances production of fatty acid-derived volatiles in pear. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111905. [PMID: 37884080 DOI: 10.1016/j.plantsci.2023.111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
'Nanguo' pear emitted a rich aroma when entirely ripe. The six-carbon (C6) volatiles, including the aldehydes, 2-hexenal, and hexanal, as well as their corresponding alcohols and esters which are derived from lipoxygenase pathway are the important volatile components in 'Nanguo' pears. However, the transcriptional regulation mechanism of aroma synthesis of 'Nanguo' pears remains largely unknown. bZIP transcription factors (TFs) mediate different developmental processes in plants. In this study, we identified and characterized a bZIP TF that is highly expressed and induced in 'Nanguo' pear fruits at the mature stage. The content of fatty acid-derived volatiles increased significantly in transgenic pears and tomatoes of PubZIP914 overexpression. Meanwhile, PubZIP914 could regulate PuLOX3.1 by binding directly to PuLOX3.1 promoter. The results of this study provide evidence demonstrating how bZIP transcription factors regulate fatty acid-derived volatiles biosynthesis during pear fruit ripening.
Collapse
Affiliation(s)
- Yangyang Chen
- Jiangsu Engineering Research Center for Pear, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Wu
- Jiangsu Engineering Research Center for Pear, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohua Wang
- Jiangsu Engineering Research Center for Pear, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Qionghou Li
- Jiangsu Engineering Research Center for Pear, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yin
- Jiangsu Engineering Research Center for Pear, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- Jiangsu Engineering Research Center for Pear, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Wang S, Zhao Y, Chen Y, Gao M, Wang Y. The Association between BZIP Transcription Factors and Flower Development in Litsea cubeba. Int J Mol Sci 2023; 24:16646. [PMID: 38068969 PMCID: PMC10705912 DOI: 10.3390/ijms242316646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The basic leucine zipper (bZIP) family is one of the largest families of transcription factors among eukaryotic organisms. Members of the bZIP family play various roles in regulating the intricate process of flower development in plants. Litsea cubeba (Lour.) (family: Lauraceae) is an aromatic, dioecious plant used in China for a wide range of applications. However, no study to date has undertaken a comprehensive analysis of the bZIP gene family in L. cubeba. In this work, we identified 68 members of the bZIP gene family in L. cubeba and classified them into 12 subfamilies based on previous studies on Arabidopsis thaliana. Transcriptome data analysis revealed that multiple LcbZIP genes exhibit significantly high expression levels in the flowers of L. cubeba, while some also demonstrate distinct temporal specificity during L. cubeba flower development. In particular, some LcbZIP genes displayed specific and high expression levels during the stamen and pistil degradation process. Using differential gene expression analysis, weighted gene co-expression network analysis, and Gene Ontology enrichment analysis, we identified six candidate LcbZIP genes that potentially regulate stamen or pistil degradation during flower development. In summary, our findings provide a framework for future functional analysis of the LcbZIP gene family in L. cubeba and offer novel insights for investigating the mechanism underlying pistil and stamen degeneration in this plant.
Collapse
Affiliation(s)
- Siqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100000, China; (S.W.); (Y.Z.); (Y.C.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 310000, China
| | - Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100000, China; (S.W.); (Y.Z.); (Y.C.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 310000, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100000, China; (S.W.); (Y.Z.); (Y.C.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 310000, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100000, China; (S.W.); (Y.Z.); (Y.C.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 310000, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100000, China; (S.W.); (Y.Z.); (Y.C.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 310000, China
| |
Collapse
|
5
|
Zhang H, Ding X, Wang H, Chen H, Dong W, Zhu J, Wang J, Peng S, Dai H, Mei W. Systematic evolution of bZIP transcription factors in Malvales and functional exploration of AsbZIP14 and AsbZIP41 in Aquilaria sinensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1243323. [PMID: 37719219 PMCID: PMC10499555 DOI: 10.3389/fpls.2023.1243323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 09/19/2023]
Abstract
Introduction Agarwood, the dark-brown resin produced by Aquilaria trees, has been widely used as incense, spice, perfume or traditional medicine and 2-(2-phenethyl) chromones (PECs) are the key markers responsible for agarwood formation. But the biosynthesis and regulatory mechanism of PECs were still not illuminated. The transcription factor of basic leucine zipper (bZIP) presented the pivotal regulatory roles in various secondary metabolites biosynthesis in plants, which might also contribute to regulate PECs biosynthesis. However, molecular evolution and function of bZIP are rarely reported in Malvales plants, especially in Aquilaria trees. Methods and results Here, 1,150 bZIPs were comprehensively identified from twelve Malvales and model species genomes and the evolutionary process were subsequently analyzed. Duplication types and collinearity indicated that bZIP is an ancient or conserved TF family and recent whole genome duplication drove its evolution. Interesting is that fewer bZIPs in A. sinensis than that species also experienced two genome duplication events in Malvales. 62 AsbZIPs were divided into 13 subfamilies and gene structures, conservative domains, motifs, cis-elements, and nearby genes of AsbZIPs were further characterized. Seven AsbZIPs in subfamily D were significantly regulated by ethylene and agarwood inducer. As the typical representation of subfamily D, AsbZIP14 and AsbZIP41 were localized in nuclear and potentially regulated PECs biosynthesis by activating or suppressing type III polyketide synthases (PKSs) genes expression via interaction with the AsPKS promoters. Discussion Our results provide a basis for molecular evolution of bZIP gene family in Malvales and facilitate the understanding the potential functions of AsbZIP in regulating 2-(2-phenethyl) chromone biosynthesis and agarwood formation.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xupo Ding
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hao Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Huiqin Chen
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenhua Dong
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiahong Zhu
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jian Wang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, College of Forestry, Hainan University, Haikou, China
| | - Shiqing Peng
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenli Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
6
|
Wang H, Xu K, Li X, Blanco-Ulate B, Yang Q, Yao G, Wei Y, Wu J, Sheng B, Chang Y, Jiang CZ, Lin J. A pear S1-bZIP transcription factor PpbZIP44 modulates carbohydrate metabolism, amino acid, and flavonoid accumulation in fruits. HORTICULTURE RESEARCH 2023; 10:uhad140. [PMID: 37575657 PMCID: PMC10421730 DOI: 10.1093/hr/uhad140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/08/2023] [Indexed: 08/15/2023]
Abstract
Fruit quality is defined by attributes that give value to a commodity. Flavor, texture, nutrition, and shelf life are key quality traits that ensure market value and consumer acceptance. In pear fruit, soluble sugars, organic acids, amino acids, and total flavonoids contribute to flavor and overall quality. Transcription factors (TFs) regulate the accumulation of these metabolites during development or in response to the environment. Here, we report a novel TF, PpbZIP44, as a positive regulator of primary and secondary metabolism in pear fruit. Analysis of the transient overexpression or RNAi-transformed pear fruits and stable transgenic tomato fruits under the control of the fruit-specific E8 promoter demonstrated that PpZIP44 substantially affected the contents of soluble sugar, organic acids, amino acids, and flavonoids. In E8::PpbZIP44 tomato fruit, genes involved in carbohydrate metabolism, amino acid, and flavonoids biosynthesis were significantly induced. Furthermore, in PpbZIP44 overexpression or antisense pear fruits, the expression of genes in the related pathways was significantly impacted. PpbZIP44 directly interacted with the promoter of PpSDH9 and PpProDH1 to induce their expression, thereby depleting sorbitol and proline, decreasing citrate and malate, and enhancing fructose contents. PpbZIP44 also directly bound to the PpADT and PpF3H promoters, which led to the carbon flux toward phenylalanine metabolites and enhanced phenylalanine and flavonoid contents. These findings demonstrate that PpbZIP44 mediates multimetabolism reprogramming by regulating the gene expression related to fruit quality compounds.
Collapse
Affiliation(s)
- Hong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210014, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Kexin Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210014, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xiaogang Li
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Bárbara Blanco-Ulate
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Qingsong Yang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yiduo Wei
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Jun Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210014, China
| | - Baolong Sheng
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Youhong Chang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, California, 95616, USA
| | - Jing Lin
- College of Horticulture, Nanjing Agricultural University, Nanjing 210014, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
7
|
Eom SH, Lim HB, Hyun TK. Overexpression of the Brassica rapa bZIP Transcription Factor, BrbZIP-S, Increases the Stress Tolerance in Nicotiana benthamiana. BIOLOGY 2023; 12:biology12040517. [PMID: 37106717 PMCID: PMC10136179 DOI: 10.3390/biology12040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
In higher plants, S1-basic region-leucine zipper (S1-bZIP) transcription factors fulfill crucial roles in the physiological homeostasis of carbon and amino acid metabolisms and stress responses. However, very little is known about the physiological role of S1-bZIP in cruciferous vegetables. Here, we analyzed the physiological function of S1-bZIP from Brassica rapa (BrbZIP-S) in modulating proline and sugar metabolism. Overexpression of BrbZIP-S in Nicotiana benthamiana resulted in delayed chlorophyll degradation during the response to dark conditions. Under heat stress or recovery conditions, the transgenic lines exhibited a lower accumulation of H2O2, malondialdehyde, and protein carbonyls compared to the levels in transgenic control plants. These results strongly indicate that BrbZIP-S regulates plant tolerance against dark and heat stress. We propose that BrbZIP-S is a modulator of proline and sugar metabolism, which are required for energy homeostasis in response to environmental stress conditions.
Collapse
|
8
|
Genome-Wide Identification and Characterization of Copper Chaperone for Superoxide Dismutase (CCS) Gene Family in Response to Abiotic Stress in Soybean. Int J Mol Sci 2023; 24:ijms24065154. [PMID: 36982229 PMCID: PMC10048983 DOI: 10.3390/ijms24065154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
Copper Chaperone For Superoxide Dismutase (CCS) genes encode copper chaperone for Superoxide dismutase (SOD) and dramatically affect the activity of SOD through regulating copper delivery from target to SOD. SOD is the effective component of the antioxidant defense system in plant cells to reduce oxidative damage by eliminating Reactive oxygen species (ROS), which are produced during abiotic stress. CCS might play an important role in abiotic stress to eliminate the damage caused by ROS, however, little is known about CCS in soybean in abiotic stress regulation. In this study, 31 GmCCS gene family members were identified from soybean genome. These genes were classified into 4 subfamilies in the phylogenetic tree. Characteristics of 31 GmCCS genes including gene structure, chromosomal location, collinearity, conserved domain, protein motif, cis-elements, and tissue expression profiling were systematically analyzed. RT-qPCR was used to analyze the expression of 31 GmCCS under abiotic stress, and the results showed that 5 GmCCS genes(GmCCS5, GmCCS7, GmCCS8, GmCCS11 and GmCCS24) were significantly induced by some kind of abiotic stress. The functions of these GmCCS genes in abiotic stress were tested using yeast expression system and soybean hairy roots. The results showed that GmCCS7/GmCCS24 participated in drought stress regulation. Soybean hairy roots expressing GmCCS7/GmCCS24 showed improved drought stress tolerance, with increased SOD and other antioxidant enzyme activities. The results of this study provide reference value in-depth study CCS gene family, and important gene resources for the genetic improvement of soybean drought stress tolerance.
Collapse
|
9
|
Nguyen NH, Bui TP, Le NT, Nguyen CX, Le MTT, Dao NT, Phan Q, Van Le T, To HMT, Pham NB, Chu HH, Do PT. Disrupting Sc-uORFs of a transcription factor bZIP1 using CRISPR/Cas9 enhances sugar and amino acid contents in tomato (Solanum lycopersicum). PLANTA 2023; 257:57. [PMID: 36795295 DOI: 10.1007/s00425-023-04089-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Induced mutations in the SC-uORF of the tomato transcription factor gene SlbZIP1 by the CRISPR/Cas9 system led to the high accumulation of sugar and amino acid contents in tomato fruits. Tomato (Solanum lycopersicum) is one of the most popular and consumed vegetable crops in the world. Among important traits for tomato improvement such as yield, biotic and abiotic resistances, appearance, post-harvest shelf life and fruit quality, the last one seems to face more challenges because of its genetic and biochemical complexities. In this study, a dual-gRNAs CRISPR/Cas9 system was developed to induce targeted mutations in uORF regions of the SlbZIP1, a gene involved in the sucrose-induced repression of translation (SIRT) mechanism. Different induced mutations in the SlbZIP1-uORF region were identified at the T0 generation, stably transferred to the offspring, and no mutation was found at potential off-target sites. The induced mutations in the SlbZIP1-uORF region affected the transcription of SlbZIP1 and related genes in sugar and amino acid biosynthesis. Fruit component analysis showed significant increases in soluble solid, sugar and total amino acid contents in all SlbZIP1-uORF mutant lines. The accumulation of sour-tasting amino acids, including aspartic and glutamic acids, raised from 77 to 144%, while the accumulation of sweet-tasting amino acids such as alanine, glycine, proline, serine, and threonine increased from 14 to 107% in the mutant plants. Importantly, the potential SlbZIP1-uORF mutant lines with desirable fruit traits and no impaired effect on plant phenotype, growth and development were identified under the growth chamber condition. Our result indicates the potential utility of the CRISPR/Cas9 system for fruit quality improvement in tomato and other important crops.
Collapse
Affiliation(s)
- Nhung Hong Nguyen
- Laboratory of Plant Cell of Biotechnology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thao Phuong Bui
- Laboratory of Plant Cell of Biotechnology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ngoc Thu Le
- Laboratory of Plant Cell of Biotechnology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Cuong Xuan Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - My Tra Thi Le
- Laboratory of Plant Cell of Biotechnology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nhan Trong Dao
- Laboratory of Plant Cell of Biotechnology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Quyen Phan
- Laboratory of Plant Cell of Biotechnology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Trong Van Le
- National Center for Food Analysis and Assessment, Food Industries Research Institute, Hanoi, Vietnam
| | - Huong Mai Thi To
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ngoc Bich Pham
- Laboratory of Applied DNA Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha Hoang Chu
- Laboratory of Plant Cell of Biotechnology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| | - Phat Tien Do
- Laboratory of Plant Cell of Biotechnology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| |
Collapse
|
10
|
Genome-Wide Analysis of the ERF Family and Identification of Potential Genes Involved in Fruit Ripening in Octoploid Strawberry. Int J Mol Sci 2022; 23:ijms231810550. [PMID: 36142464 PMCID: PMC9502190 DOI: 10.3390/ijms231810550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Ethylene response factors (ERFs) belonging to the APETALA2/ERF superfamily acted at the end of the ethylene signaling pathway, and they were found to play important roles in plant growth and development. However, the information of ERF genes in strawberry and their involvement in fruit ripening have been limited. Here, a total of 235 ERF members were identified from 426 AP2/ERF genes at octoploid strawberry genome level and classified into six subgroups according to their sequence characteristics and phylogenetic relationship. Conserved motif and gene structure analysis supported the evolutionary conservation of FaERFs. Syntenic analysis showed that four types of duplication events occurred during the expansion of FaERF gene family. Of these, WGD/segmental duplication played a major role. Transcriptomic data of FaERF genes during fruit ripening and in response to abscisic acid screened one activator (FaERF316) and one repressor (FaERF118) that were involved in fruit ripening. Transcriptional regulation analysis showed some transcription factors related to ripening such as ABI4, TCP15, and GLK1 could bind to FaERF316 or FaERF118 promoters, while protein-protein interaction analysis displayed some proteins associated with plant growth and development could interact with FaERF118 or FaERF316. These results suggested that FaERF118 and FaERF316 were potential genes to regulate strawberry ripening. In summary, the present study provides the comprehensive and systematic information on FaERF family evolution and gains insights into FaERF's potential regulatory mechanism in strawberry ripening.
Collapse
|