1
|
Zhang X, Wen H, Wang J, Zhao L, Chen L, Li J, Guan H, Cui Z, Liu B. Genetic analysis of QTLs for lysine content in four maize DH populations. BMC Genomics 2024; 25:852. [PMID: 39261785 PMCID: PMC11391625 DOI: 10.1186/s12864-024-10754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Low levels of the essential amino acid lysine in maize endosperm is considered to be a major problem regarding the nutritional quality of food and feed. Increasing the lysine content of maize is important to improve the quality of food and feed nutrition. Although the genetic basis of quality protein maize (QPM) has been studied, the further exploration of the quantitative trait loci (QTL) underlying lysine content variation still needs more attention. RESULTS Eight maize inbred lines with increased lysine content were used to construct four double haploid (DH) populations for identification of QTLs related to lysine content. The lysine content in the four DH populations exhibited continuous and normal distribution. A total of 12 QTLs were identified in a range of 4.42-12.66% in term of individual phenotypic variation explained (PVE) which suggested the quantitative control of lysine content in maize. Five main genes involved in maize lysine biosynthesis pathways in the QTL regions were identified in this study. CONCLUSIONS The information presented will allow the exploration of candidate genes regulating lysine biosynthesis pathways and be useful for marker-assisted selection and gene pyramiding in high-lysine maize breeding programs.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Key Laboratory of Safety and Quality of Cereals and Their Products for State Market Regulation, Harbin, Heilongjiang, China
| | - Hongtao Wen
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Key Laboratory of Safety and Quality of Cereals and Their Products for State Market Regulation, Harbin, Heilongjiang, China
| | - Jing Wang
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Key Laboratory of Safety and Quality of Cereals and Their Products for State Market Regulation, Harbin, Heilongjiang, China
| | - Lin Zhao
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Key Laboratory of Safety and Quality of Cereals and Their Products for State Market Regulation, Harbin, Heilongjiang, China
| | - Lei Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jialei Li
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Haitao Guan
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China.
- Key Laboratory of Safety and Quality of Cereals and Their Products for State Market Regulation, Harbin, Heilongjiang, China.
| | - Zhenhai Cui
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China.
| | - Baohai Liu
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China.
- Key Laboratory of Safety and Quality of Cereals and Their Products for State Market Regulation, Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
Wang C, Qin K, Shang X, Gao Y, Wu J, Ma H, Wei Z, Dai G. Mapping quantitative trait loci associated with self-(in)compatibility in goji berries (Lycium barbarum). BMC PLANT BIOLOGY 2024; 24:441. [PMID: 38778301 PMCID: PMC11112781 DOI: 10.1186/s12870-024-05092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Goji (Lycium barbarum L.) is a perennial deciduous shrub widely distributed in arid and semiarid regions of Northwest China. It is highly valued for its medicinal and functional properties. Most goji varieties are naturally self-incompatible, posing challenges in breeding and cultivation. Self-incompatibility is a complex genetic trait, with ongoing debates regarding the number of self-incompatible loci. To date, no genetic mappings has been conducted for S loci or other loci related to self-incompatibility in goji. RESULTS We used genome resequencing to create a high-resolution map for detecting de novo single-nucleotide polymorphisms (SNP) in goji. We focused on 229 F1 individuals from self-compatible '13-19' and self-incompatible 'new 9' varieties. Subsequently, we conducted a quantitative trait locus (QTL) analysis on traits associated with self-compatibility in goji berries. The genetic map consisted of 249,327 SNPs distributed across 12 linkage groups (LGs), spanning a total distance of 1243.74 cM, with an average interval of 0.002 cM. Phenotypic data related to self-incompatibility, such as average fruit weight, fruit rate, compatibility index, and comparable compatibility index after self-pollination and geitonogamy, were collected for the years 2021-2022, as well as for an extra year representing the mean data from 2021 to 2022 (2021/22). A total of 43 significant QTL, corresponding to multiple traits were identified, accounting for more than 11% of the observed phenotypic variation. Notably, a specific QTL on chromosome 2 consistently appeared across different years, irrespective of the relationship between self-pollination and geitonogamy. Within the localization interval, 1180 genes were annotated, including Lba02g01102 (annotated as an S-RNase gene), which showed pistil-specific expression. Cloning of S-RNase genes revealed that the parents had two different S-RNase alleles, namely S1S11 and S2S8. S-genotype identification of the F1 population indicated segregation of the four S-alleles from the parents in the offspring, with the type of S-RNase gene significantly associated with self-compatibility. CONCLUSIONS In summary, our study provides valuable insights into the genetic mechanism underlying self-compatibility in goji berries. This highlights the importance of further positional cloning investigations and emphasizes the importance of integration of marker-assisted selection in goji breeding programs.
Collapse
Affiliation(s)
- Cuiping Wang
- School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, China.
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan, 750004, China.
| | - Ken Qin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xiaohui Shang
- School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, China
| | - Yan Gao
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Jiali Wu
- School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, China
| | - Haijun Ma
- School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, China
- Ningxia Grape and Wine Technology Center, North Minzu University, Yinchuan, 750021, China
| | - Zhaojun Wei
- School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, China
| | - Guoli Dai
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China.
| |
Collapse
|
3
|
Zhou J, Liu Q, Tian R, Chen H, Wang J, Yang Y, Zhao C, Liu Y, Tang H, Deng M, Xu Q, Jiang Q, Chen G, Qi P, Jiang Y, Chen G, Tang L, Ren Y, Zheng Z, Liu C, Zheng Y, He Y, Wei Y, Ma J. A co-located QTL for seven spike architecture-related traits shows promising breeding use potential in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:31. [PMID: 38267732 DOI: 10.1007/s00122-023-04536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024]
Abstract
KEY MESSAGE A co-located novel QTL for TFS, FPs, FMs, FFS, FFPs, KWS, and KWPs with potential of improving wheat yield was identified and validated. Spike-related traits, including fertile florets per spike (FFS), kernel weight per spike (KWS), total florets per spike (TFS), florets per spikelet (FPs), florets in the middle spikelet (FMs), fertile florets per spikelet (FFPs), and kernel weight per spikelet (KWPs), are key traits in improving wheat yield. In the present study, quantitative trait loci (QTL) for these traits evaluated under various environments were detected in a recombinant inbred line population (msf/Chuannong 16) mainly genotyped using the 16 K SNP array. Ultimately, we identified 60 QTL, but only QFFS.sau-MC-1A for FFS was a major and stably expressed QTL. It was located on chromosome arm 1AS, where loci for TFS, FPs, FMs, FFS, FFPs, KWS, and KWPs were also simultaneously co-mapped. The effect of QFFS.sau-MC-1A was further validated in three independent segregating populations using a Kompetitive Allele-Specific PCR marker. For the co-located QTL, QFFS.sau-MC-1A, the presence of a positive allele from msf was associate with increases for all traits: + 12.29% TFS, + 10.15% FPs, + 13.97% FMs, + 17.12% FFS, + 14.75% FFPs, + 22.17% KWS, and + 19.42% KWPs. Furthermore, pleiotropy analysis showed that the positive allele at QFFS.sau-MC-1A simultaneously increased the spike length, spikelet number per spike, and thousand-kernel weight. QFFS.sau-MC-1A represents a novel QTL for marker-assisted selection with the potential for improving wheat yield. Four genes, TraesCS1A03G0012700, TraesCS1A03G0015700, TraesCS1A03G0016000, and TraesCS1A03G0016300, which may affect spike development, were predicted in the physical interval harboring QFFS.sau-MC-1A. Our results will help in further fine mapping QFFS.sau-MC-1A and be useful for improving wheat yield.
Collapse
Affiliation(s)
- Jieguang Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Rong Tian
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huangxin Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaoyao Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Conghao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanlin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Liwei Tang
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Yong Ren
- Mianyang Academy of Agricultural Science/Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Providence, Mianyang, China
| | - Zhi Zheng
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Chunji Liu
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuanjiang He
- Mianyang Academy of Agricultural Science/Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Providence, Mianyang, China.
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
4
|
Jiang C, Xu Z, Fan X, Zhou Q, Ji G, Liao S, Wang Y, Ma F, Zhao Y, Wang T, Feng B. Genetic dissection of major QTL for grain number per spike on chromosomes 5A and 6A in bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2024; 14:1305547. [PMID: 38259947 PMCID: PMC10800429 DOI: 10.3389/fpls.2023.1305547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024]
Abstract
Grain number per spike (GNS) is a crucial component of grain yield and plays a significant role in improving wheat yield. To identify quantitative trait loci (QTL) associated with GNS, a recombinant inbred line (RIL) population derived from the cross of Zhongkemai 13F10 and Chuanmai 42 was employed to conduct QTL mapping across eight environments. Based on the bulked segregant exome sequencing (BSE-Seq), genomic regions associated with GNS were detected on chromosomes 5A and 6A. According to the constructed genetic maps, two major QTL QGns.cib-5A (LOD = 4.35-8.16, PVE = 8.46-14.43%) and QGns.cib-6A (LOD = 3.82-30.80, PVE = 5.44-12.38%) were detected in five and four environments, respectively. QGns.cib-6A is a QTL cluster for other seven yield-related traits. QGns.cib-5A and QGns.cib-6A were further validated using linked Kompetitive Allele Specific PCR (KASP) markers in different genetic backgrounds. QGns.cib-5A exhibited pleiotropic effects on productive tiller number (PTN), spike length (SL), fertile spikelet number per spike (FSN), and ratio of grain length to grain width (GL/GW) but did not significantly affect thousand grain weight (TGW). Haplotype analysis revealed that QGns.cib-5A and QGns.cib-6A were the targets of artificial selection during wheat improvement. Candidate genes for QGns.cib-5A and QGns.cib-6A were predicted by analyzing gene annotation, spatiotemporal expression patterns, and orthologous and sequence differences. These findings will be valuable for fine mapping and map-based cloning of genes underlying QGns.cib-5A and QGns.cib-6A.
Collapse
Affiliation(s)
- Cheng Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangsi Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Simin Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlin Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fang Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun Zhao
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- The Innovative of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
5
|
Zhao J, Zheng X, Qiao L, Yang C, Wu B, He Z, Tang Y, Li G, Yang Z, Zheng J, Qi Z. Genome-wide association study reveals structural chromosome variations with phenotypic effects in wheat (Triticum aestivum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1447-1461. [PMID: 36345647 DOI: 10.1111/tpj.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Structural chromosome variations (SCVs) are large-scale genomic variations that can be detected by fluorescence in situ hybridization (FISH). SCVs have played important roles in the genome evolution of wheat (Triticum aestivum L.), but little is known about their genetic effects. In this study, a total of 543 wheat accessions from the Chinese wheat mini-core collection and the Shanxi Province wheat collection were used for chromosome analysis using oligonucleotide probe multiplex FISH. A total of 139 SCVs including translocations, pericentric inversions, presence/absence variations (PAVs), and copy number variations (CNVs) in heterochromatin were identified at 230 loci. The distribution frequency of SCVs varied between ecological regions and between landraces and modern cultivars. Structural analysis using SCVs as markers clearly divided the landraces and modern cultivars into different groups. There are very clear instances illustrating alien introgression and wide application of foreign germplasms improved the chromosome diversity of Chinese modern wheat cultivars. A genome-wide association study (GWAS) identified 29 SCVs associated with 12 phenotypic traits, and five (RT4AS•4AL-1DS/1DL•1DS-4AL, Mg2A-3, Mr3B-10, Mr7B-13, and Mr4A-7) of them were further validated using a doubled haploid population and advanced sib-lines, implying the potential value of these SCVs. Importantly, the number of favored SCVs that were associated with agronomic trait improvement was significantly higher in modern cultivars compared to landraces, indicating positive selection in wheat breeding. This study demonstrates the significant effects of SCVs during wheat breeding and provides an efficient method of mining favored SCVs in wheat and other crops.
Collapse
Affiliation(s)
- Jiajia Zhao
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingwei Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Ling Qiao
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Chenkang Yang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Bangbang Wu
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Ziming He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqing Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu, 611731, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu, 611731, China
| | - Jun Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Zengjun Qi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
6
|
Yang B, Chen N, Dang Y, Wang Y, Wen H, Zheng J, Zheng X, Zhao J, Lu J, Qiao L. Identification and validation of quantitative trait loci for chlorophyll content of flag leaf in wheat under different phosphorus treatments. FRONTIERS IN PLANT SCIENCE 2022; 13:1019012. [PMID: 36466250 PMCID: PMC9714299 DOI: 10.3389/fpls.2022.1019012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
In wheat, the leaf chlorophyll content in flag leaves is closely related to the degree of phosphorus stress. Identifying major genes/loci associated with chlorophyll content in flag leaves under different phosphorus conditions is critical for breeding wheat varieties resistant to low phosphorus (P). Under normal, medium, and low phosphorus conditions, the chlorophyll content of flag leaves was investigated by a double haploid (DH) population derived from a cross between two popular wheat varieties Jinmai 47 and Jinmai 84, at different grain filling stages. Chlorophyll content of the DH population and parents decreased gradually during the S1 to the S3 stages and rapidly at the S4 stage. At the S4 stage, the chlorophyll content of the DH population under low phosphorus conditions was significantly lower than under normal phosphate conditions. Using a wheat 15K single-nucleotide polymorphism (SNP) panel, a total of 157 QTLs were found to be associated with chlorophyll content in flag leaf and were identified under three phosphorus conditions. The phenotypic variation explained (PVE) ranged from 3.07 to 31.66%. Under three different phosphorus conditions, 36, 30, and 48 QTLs for chlorophyll content were identified, respectively. Six major QTLs Qchl.saw-2B.1, Qchl.saw-3B.1, Qchl.saw-4D.1, Qchl.saw-4D.2, Qchl.saw-5A.9 and Qchl.saw-6A.4 could be detected under multiple phosphorus conditions in which Qchl.saw-4D.1, Qchl.saw-4D.2, and Qchl.saw-6A.4 were revealed to be novel major QTLs. Moreover, the closely linked SNP markers of Qchl.saw-4D.1 and Qchl.saw-4D.2 were validated as KASP markers in a DH population sharing the common parent Jinmai 84, showed extreme significance (P <0.01) in more than three environments under different phosphorus conditions, which has the potential to be utilized in molecular marker-assisted breeding for low phosphorus tolerance in wheat.
Collapse
Affiliation(s)
- Bin Yang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Nan Chen
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
- College of Agronomy, Shanxi Agricultural University, Taiyuan, China
| | - Yifei Dang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
- College of Agronomy, Shanxi Agricultural University, Taiyuan, China
| | - Yuzhi Wang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Hongwei Wen
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Jun Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Xingwei Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Jiajia Zhao
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Jinxiu Lu
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Ling Qiao
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| |
Collapse
|
7
|
Huang S, Zhang Y, Ren H, Li X, Zhang X, Zhang Z, Zhang C, Liu S, Wang X, Zeng Q, Wang Q, Singh RP, Bhavani S, Wu J, Han D, Kang Z. Epistatic interaction effect between chromosome 1BL (Yr29) and a novel locus on 2AL facilitating resistance to stripe rust in Chinese wheat Changwu 357-9. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2501-2513. [PMID: 35723707 DOI: 10.1007/s00122-022-04133-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Four stable QTL for adult plant resistance were identified in wheat line Changwu 357-9, including a new QTL on 2AL showing significant interaction with Yr29 to reduce stripe rust severity. Stripe rust (yellow rust) is a serious disease of bread wheat (Triticum aestivum L.) worldwide. Genetic resistance is considered the most economical, effective and environmentally friendly method to control the disease and to minimize the use of fungicides. The current study focused on characterizing the components of stripe rust resistance and understanding the interactions in Changwu 357-9 (CW357-9)/Avocet S RIL population. A genetic linkage map constructed using a new GenoBaits Wheat 16K Panel and the 660K SNP array had 5104 polymorphic SNP markers spanning 3533.11 cM. Four stable QTL, consistently identified across five environments, were detected on chromosome arms 1BL, 2AL, 3DS, and 6BS in Changwu357-9. The most effective QTL QYrCW357-1BL was Yr29. The 6BS QTL was identified as Yr78, which has been combined with the 1BL QTL in many wheat cultivars and breeding lines. The novel QTL on 2AL with moderate effect showed a stable and significant epistatic interaction with Yr29. The QTL on 3DL should be same as QYrsn.nwafu-3DL and enriches the overall stripe rust resistance gene pool for breeding. Polymorphisms of flanking AQP markers AX-110020417 (for QYrCW357-1BL), AX-110974948 (for QYrCW357-2AL), AX-109466386 (for QYrCW357-3DL), and AX-109995005 (for QYrCW357-6BS) were evaluated in a diversity panel including 225 wheat cultivars and breeding lines. These results suggested that these high-throughput markers could be used to introduce QYrCW357-1BL, QYrCW357-2AL, QYrCW357-3DL, and QYrCW357-6BS into commercial wheat cultivars. Combinations of these genes with other APR QTL should lead to higher levels of stripe rust resistance along with the beneficial effects of multi-disease resistance gene Yr29 on improving resistance to other diseases.
Collapse
Affiliation(s)
- Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yibo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Hui Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zeyuan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chuanliang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 56237, El Batan, Texcoco, Estado de Mexico, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), 56237, El Batan, Texcoco, Estado de Mexico, Mexico
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|