1
|
Shahzad A, Fan Y, Qian M, Khan SU, Mahmood U, Wei L, Qu C, Lu K. Genome-wide characterization of Related to ABI3/VP1 transcription factors among U's triangle Brassica species reveals a negative role for BnaA06.RAV3L in seed size. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108854. [PMID: 38901228 DOI: 10.1016/j.plaphy.2024.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
The transcription factors Related to ABI3/VP1 (RAV) are crucial for various plant processes and stress responses. Although the U's triangle Brassica species genomes have been released, the knowledge regarding the RAV family is still limited. In this study, we identified 123 putative RAV genes across the six U's triangle Brassica species (Brassica rapa, 14; Brassica oleracea, 14; Brassica nigra, 13; Brassica carinata, 27; Brassica juncea, 28; Brassica napus, 27). Phylogenetic analysis categorized them into three groups. The RAV genes exhibited diversity in both functional and structural aspects, particularly in gene structure and cis-acting elements within their promoters. The expression analysis revealed that BnaRAV genes in Group 1/2 exhibited diverse expression patterns across various tissues, while those in Group 3 did not show expression except for BnaRAV3L-2 and BnaRAV3L-6, which were exclusively expressed in seeds. Furthermore, the seed-specific expression of BnaA06. RAV3L (BnaRAV3L-2) was confirmed through promoter-GUS staining. Subcellular localization studies demonstrated that BnaA06.RAV3L is localized to the nucleus. The overexpression of BnaA06. RAV3L in Arabidopsis led to a remarkable inhibition of seed-specific traits such as seed width, seed length, seed area, and seed weight. This study provides insights into the functional evolution of the RAV gene family in U triangle Brassica species. It establishes a foundation for uncovering the molecular mechanisms underlying the negative role of RAV3L in seed development.
Collapse
Affiliation(s)
- Ali Shahzad
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Mingchao Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Umer Mahmood
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Lijuan Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
2
|
Ding J, Yao B, Yang X, Shen L. SmRAV1, an AP2 and B3 Transcription Factor, Positively Regulates Eggplant's Response to Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:4174. [PMID: 38140500 PMCID: PMC10747502 DOI: 10.3390/plants12244174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Salt stress is a lethal abiotic stress threatening global food security on a consistent basis. In this study, we identified an AP2 and B3 domain-containing transcription factor (TF) named SmRAV1, and its expression levels were significantly up-regulated by NaCl, abscisic acid (ABA), and hydrogen peroxide (H2O2) treatment. High expression of SmRAV1 was observed in the roots and sepal of mature plants. The transient expression assay in Nicotiana benthamiana leaves revealed that SmRAV1 was localized in the nucleus. Silencing of SmRAV1 via virus-induced gene silencing (VIGS) decreased the tolerance of eggplant to salt stress. Significant down-regulation of salt stress marker genes, including SmGSTU10 and SmNCED1, was observed. Additionally, increased H2O2 content and decreased catalase (CAT) enzyme activity were recorded in the SmRAV1-silenced plants compared to the TRV:00 plants. Our findings elucidate the functions of SmRAV1 and provide opportunities for generating salt-tolerant lines of eggplant.
Collapse
Affiliation(s)
| | | | | | - Lei Shen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (J.D.); (B.Y.); (X.Y.)
| |
Collapse
|
3
|
Cheng H, Wang Q, Zhang Z, Cheng P, Song A, Zhou L, Wang L, Chen S, Chen F, Jiang J. The RAV transcription factor TEMPRANILLO1 involved in ethylene-mediated delay of chrysanthemum flowering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1652-1666. [PMID: 37696505 DOI: 10.1111/tpj.16453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
TEMPRANILLO1 (TEM1) is a transcription factor belonging to related to ABI3 and VP1 family, which is also known as ethylene response DNA-binding factor 1 and functions as a repressor of flowering in Arabidopsis. Here, a putative homolog of AtTEM1 was isolated and characterized from chrysanthemum, designated as CmTEM1. Exogenous application of ethephon leads to an upregulation in the expression of CmTEM1. Knockdown of CmTEM1 promotes floral initiation, while overexpression of CmTEM1 retards floral transition. Further phenotypic observations suggested that CmTEM1 involves in the ethylene-mediated inhibition of flowering. Transcriptomic analysis established that expression of the flowering integrator CmAFL1, a member of the APETALA1/FRUITFULL subfamily, was downregulated significantly in CmTEM1-overexpressing transgenic plants compared with wild-type plants but was verified to be upregulated in amiR-CmTEM1 lines by quantitative RT-PCR. In addition, CmTEM1 is capable of binding to the promoter of the CmAFL1 gene to inhibit its transcription. Moreover, the genetic evidence supported the notion that CmTEM1 partially inhibits floral transition by targeting CmAFL1. In conclusion, these findings demonstrate that CmTEM1 acts as a regulator of ethylene-mediated delayed flowering in chrysanthemum, partly through its interaction with CmAFL1.
Collapse
Affiliation(s)
- Hua Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingguo Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zixin Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peilei Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| |
Collapse
|
4
|
Ye C, He Z, Peng J, Wang R, Wang X, Fu M, Zhang Y, Wang A, Liu Z, Jia G, Chen Y, Tian B. Genomic and genetic advances of oiltea-camellia ( Camellia oleifera). FRONTIERS IN PLANT SCIENCE 2023; 14:1101766. [PMID: 37077639 PMCID: PMC10106683 DOI: 10.3389/fpls.2023.1101766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Oiltea-camellia (C. oleifera) is a widely cultivated woody oil crop in Southern China and Southeast Asia. The genome of oiltea-camellia was very complex and not well explored. Recently, genomes of three oiltea-camellia species were sequenced and assembled, multi-omic studies of oiltea-camellia were carried out and provided a better understanding of this important woody oil crop. In this review, we summarized the recent assembly of the reference genomes of oiltea-camellia, genes related to economic traits (flowering, photosynthesis, yield and oil component), disease resistance (anthracnose) and environmental stress tolerances (drought, cold, heat and nutrient deficiency). We also discussed future directions of integrating multiple omics for evaluating genetic resources and mining key genes of important traits, and the application of new molecular breeding and gene editing technologies to accelerate the breeding process of oiltea-camellia.
Collapse
Affiliation(s)
- Changrong Ye
- Academy of Innovation and Research, Huazhi Biotechnology Co. Ltd., Changsha, China
| | - Zhilong He
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
| | - Jiayu Peng
- Academy of Innovation and Research, Huazhi Biotechnology Co. Ltd., Changsha, China
| | - Rui Wang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
| | - Xiangnan Wang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
| | - Mengjiao Fu
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
| | - Ying Zhang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
| | - Ai Wang
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
| | - Zhixian Liu
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
| | - Gaofeng Jia
- Academy of Innovation and Research, Huazhi Biotechnology Co. Ltd., Changsha, China
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
- *Correspondence: Gaofeng Jia, ; Yongzhong Chen, ; Bingchuan Tian,
| | - Yongzhong Chen
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
- *Correspondence: Gaofeng Jia, ; Yongzhong Chen, ; Bingchuan Tian,
| | - Bingchuan Tian
- Academy of Innovation and Research, Huazhi Biotechnology Co. Ltd., Changsha, China
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
- *Correspondence: Gaofeng Jia, ; Yongzhong Chen, ; Bingchuan Tian,
| |
Collapse
|
5
|
Muñoz-Avila JC, Prieto C, Sánchez-Sevilla JF, Amaya I, Castillejo C. Role of FaSOC1 and FaCO in the seasonal control of reproductive and vegetative development in the perennial crop Fragaria × ananassa. FRONTIERS IN PLANT SCIENCE 2022; 13:971846. [PMID: 36061771 PMCID: PMC9428485 DOI: 10.3389/fpls.2022.971846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The diploid woodland strawberry (F. vesca) represents an important model for the genus Fragaria. Significant advances in the understanding of the molecular mechanisms regulating seasonal alternance of flower induction and vegetative reproduction has been made in this species. However, this research area has received little attention on the cultivated octoploid strawberry (F. × ananassa) despite its enormous agronomical and economic importance. To advance in the characterization of this intricated molecular network, expression analysis of key flowering time genes was performed both in short and long days and in cultivars with seasonal and perpetual flowering. Analysis of overexpression of FaCO and FaSOC1 in the seasonal flowering 'Camarosa' allowed functional validation of a number of responses already observed in F. vesca while uncovered differences related to the regulation of FaFTs expression and gibberellins (GAs) biosynthesis. While FvCO has been shown to promote flowering and inhibit runner development in the perpetual flowering H4 accession of F. vesca, our study showed that FaCO responds to LD photoperiods as in F. vesca but delayed flowering to some extent, possibly by induction of the strong FaTFL1 repressor in crowns. A contrasting effect on runnering was observed in FaCO transgenic plants, some lines showing reduced runner number whereas in others runnering was slightly accelerated. We demonstrate that the role of the MADS-box transcription factor FaSOC1 as a strong repressor of flowering and promoter of vegetative growth is conserved in woodland and cultivated strawberry. Our study further indicates an important role of FaSOC1 in the photoperiodic repression of FLOWERING LOCUS T (FT) genes FaFT2 and FaFT3 while FaTFL1 upregulation was less prominent than that observed in F. vesca. In our experimental conditions, FaSOC1 promotion of vegetative growth do not require induction of GA biosynthesis, despite GA biosynthesis genes showed a marked photoperiodic upregulation in response to long days, supporting GA requirement for the promotion of vegetative growth. Our results also provided insights into additional factors, such as FaTEM, associated with the vegetative developmental phase that deserve further characterization in the future.
Collapse
Affiliation(s)
- Julio C. Muñoz-Avila
- Laboratorio de Mejora y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, Málaga, Spain
| | - Concepción Prieto
- Laboratorio de Mejora y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, Málaga, Spain
| | - José F. Sánchez-Sevilla
- Laboratorio de Mejora y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, Málaga, Spain
- Unidad Asociada de I + D + i IFAPA-CSIC, Biotecnología y Mejora en Fresa, Málaga, Spain
| | - Iraida Amaya
- Laboratorio de Mejora y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, Málaga, Spain
- Unidad Asociada de I + D + i IFAPA-CSIC, Biotecnología y Mejora en Fresa, Málaga, Spain
| | - Cristina Castillejo
- Laboratorio de Mejora y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, Málaga, Spain
| |
Collapse
|
6
|
Genome-Wide Analysis of the RAV Gene Family in Wheat and Functional Identification of TaRAV1 in Salt Stress. Int J Mol Sci 2022; 23:ijms23168834. [PMID: 36012100 PMCID: PMC9408559 DOI: 10.3390/ijms23168834] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
RAV transcription factors (TFs) are unique to higher plants and contain both B3 and APETALA2 (AP2) DNA binding domains. Although sets of RAV genes have been identified from several species, little is known about this family in wheat. In this study, 26 RAV genes were identified in the wheat genome. These wheat RAV TFs were phylogenetically clustered into three classes based on their amino acid sequences. A TaRAV gene located on chromosome 1D was cloned and named TaRAV1. TaRAV1 was expressed in roots, stems, leaves, and inflorescences, and its expression was up-regulated by heat while down-regulated by salt, ABA, and GA. Subcellular localization analysis revealed that the TaRAV1 protein was localized in the nucleus. The TaRAV1 protein showed DNA binding activity in the EMSA assay and transcriptional activation activity in yeast cells. Overexpressing TaRAV1 enhanced the salt tolerance of Arabidopsis and upregulated the expression of SOS genes and other stress response genes. Collectively, our data suggest that TaRAV1 functions as a transcription factor and is involved in the salt stress response by regulating gene expression in the SOS pathway.
Collapse
|