1
|
Botero-Ramirez A, Kirk B, Strelkov SE. Optimizing Clubroot Management and the Role of Canola Cultivar Mixtures. Pathogens 2024; 13:640. [PMID: 39204241 PMCID: PMC11357626 DOI: 10.3390/pathogens13080640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
The sustainable cultivation of canola is under threat from clubroot disease (Plasmodiophora brassicae). The pathogen's resting spores can survive in the soil for extended periods, complicating disease management. Therefore, effective clubroot control requires a combination of tactics that provide multiple layers of protection. Management strategies have focused on pathogen avoidance and reducing disease levels in infested fields. The sanitation of machinery and field equipment remains the most effective method for preventing the pathogen's introduction into non-infested fields. For disease reduction, crop rotation, liming, chemical control, and host resistance are commonly employed, with the use of clubroot-resistant cultivars being the most effective to date. However, resistance breakdown has been observed within four years of the introduction of new cultivars, jeopardizing the long-term effectiveness of this approach. A promising yet underexplored strategy is the use of cultivar mixtures. This approach leverages mechanisms such as the dilution effect, the barrier effect, induced resistance, disruptive selection, and the compensatory effect to control the disease. Cultivar mixtures have the potential to reduce the impact of clubroot on canola production while preserving pathogen population structure, thereby minimizing the likelihood of resistance breakdown. Given its potential, further research into cultivar mixtures as a management strategy for clubroot disease is warranted.
Collapse
Affiliation(s)
- Andrea Botero-Ramirez
- Department of Biological Sciences, Faculty of Arts and Science, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Brennon Kirk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| |
Collapse
|
2
|
Cao Y, Li X, Song H, Abdullah M, Manzoor MA. Editorial: Multi-omics and computational biology in horticultural plants: from genotype to phenotype, volume II. FRONTIERS IN PLANT SCIENCE 2024; 15:1368909. [PMID: 38371409 PMCID: PMC10869615 DOI: 10.3389/fpls.2024.1368909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Affiliation(s)
- Yunpeng Cao
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
| | - Xiaoxu Li
- Beijing Life Science Academy, Beijing, China
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Muhammad Abdullah
- Queensland Alliance of Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Salih R, Brochu AS, Labbé C, Strelkov SE, Franke C, Bélanger R, Pérez-López E. A Hydroponic-Based Bioassay to Facilitate Plasmodiophora brassicae Phenotyping. PLANT DISEASE 2024; 108:131-138. [PMID: 37536345 DOI: 10.1094/pdis-05-23-0959-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Clubroot, caused by the obligate parasite Plasmodiophora brassicae, is one of the most devastating diseases affecting the canola/oilseed rape (Brassica napus) industry worldwide. Currently, the planting of clubroot-resistant (CR) cultivars is the most effective strategy used to restrict the spread and the economic losses linked to the disease. However, virulent P. brassicae isolates have been able to infect many of the currently available CR cultivars, and the options to manage the disease are becoming limited. Another challenge has been achieving consistency in evaluating host reactions to P. brassicae infection, with most bioassays conducted in soil and/or potting medium, which requires significant space and can be labor intensive. Visual scoring of clubroot symptom development can also be influenced by user bias. Here, we have developed a hydroponic bioassay using well-characterized P. brassicae single-spore isolates representative of clubroot virulence in Canada, as well as field isolates from three Canadian provinces in combination with canola inbred homozygous lines carrying resistance genetics representative of CR cultivars available to growers in Canada. To improve the efficiency and consistency of disease assessment, symptom severity scores were compared with clubroot evaluations based on the scanned root area. According to the results, this bioassay offers a reliable, less expensive, and reproducible option to evaluate P. brassicae virulence, as well as to identify which canola resistance profile(s) may be effective against particular isolates. This bioassay will contribute to the breeding of new CR canola cultivars and the identification of virulence genes in P. brassicae that could trigger resistance and that have been very elusive to this day.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Rasha Salih
- Départment de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Anne-Sophie Brochu
- Départment de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Caroline Labbé
- Départment de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
| | - Stephen E Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Coreen Franke
- Nutrien Ag Solutions Canada, Saskatoon, SK S4N 4L8, Canada
| | - Richard Bélanger
- Départment de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Edel Pérez-López
- Départment de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
4
|
Advances in Biological Control and Resistance Genes of Brassicaceae Clubroot Disease-The Study Case of China. Int J Mol Sci 2023; 24:ijms24010785. [PMID: 36614228 PMCID: PMC9821010 DOI: 10.3390/ijms24010785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
Clubroot disease is a soil-borne disease caused by Plasmodiophora brassicae. It occurs in cruciferous crops exclusively, and causes serious damage to the economic value of cruciferous crops worldwide. Although different measures have been taken to prevent the spread of clubroot disease, the most fundamental and effective way is to explore and use disease-resistance genes to breed resistant varieties. However, the resistance level of plant hosts is influenced both by environment and pathogen race. In this work, we described clubroot disease in terms of discovery and current distribution, life cycle, and race identification systems; in particular, we summarized recent progress on clubroot control methods and breeding practices for resistant cultivars. With the knowledge of these identified resistance loci and R genes, we discussed feasible strategies for disease-resistance breeding in the future.
Collapse
|