1
|
Leiva-Mora M, Capdesuñer Y, Villalobos-Olivera A, Moya-Jiménez R, Saa LR, Martínez-Montero ME. Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses. J Fungi (Basel) 2024; 10:635. [PMID: 39330396 PMCID: PMC11433257 DOI: 10.3390/jof10090635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
This paper discusses the mechanisms by which fungi manipulate plant physiology and suppress plant defense responses by producing effectors that can target various host proteins. Effector-triggered immunity and effector-triggered susceptibility are pivotal elements in the complex molecular dialogue underlying plant-pathogen interactions. Pathogen-produced effector molecules possess the ability to mimic pathogen-associated molecular patterns or hinder the binding of pattern recognition receptors. Effectors can directly target nucleotide-binding domain, leucine-rich repeat receptors, or manipulate downstream signaling components to suppress plant defense. Interactions between these effectors and receptor-like kinases in host plants are critical in this process. Biotrophic fungi adeptly exploit the signaling networks of key plant hormones, including salicylic acid, jasmonic acid, abscisic acid, and ethylene, to establish a compatible interaction with their plant hosts. Overall, the paper highlights the importance of understanding the complex interplay between plant defense mechanisms and fungal effectors to develop effective strategies for plant disease management.
Collapse
Affiliation(s)
- Michel Leiva-Mora
- Laboratorio de Biotecnología, Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato (UTA-DIDE), Cantón Cevallos Vía a Quero, Sector El Tambo-La Universidad, Cevallos 1801334, Ecuador
| | - Yanelis Capdesuñer
- Natural Products Department, Centro de Bioplantas, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Ariel Villalobos-Olivera
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Roberto Moya-Jiménez
- Facultad de Diseño y Arquitectura, Universidad Técnica de Ambato (UTA-DIDE), Huachi 180207, Ecuador;
| | - Luis Rodrigo Saa
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador;
| | - Marcos Edel Martínez-Montero
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| |
Collapse
|
2
|
Richardson KA, de Bonth ACM, Beechey-Gradwell Z, Kadam S, Cooney LJ, Nelson KA, Cookson R, Winichayakul S, Reid M, Anderson P, Crowther T, Zou X, Maher D, Xue H, Scott RW, Allan A, Johnson RD, Card SD, Mace WJ, Roberts NJ, Bryan G. Epichloë fungal endophyte interactions in perennial ryegrass (Lolium perenne L.) modified to accumulate foliar lipids for increased energy density. BMC PLANT BIOLOGY 2023; 23:636. [PMID: 38072924 PMCID: PMC10712098 DOI: 10.1186/s12870-023-04635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Commercial cultivars of perennial ryegrass infected with selected Epichloë fungal endophytes are highly desirable in certain pastures as the resulting mutualistic association has the capacity to confer agronomic benefits (such as invertebrate pest deterrence) largely due to fungal produced secondary metabolites (e.g., alkaloids). In this study, we investigated T2 segregating populations derived from two independent transformation events expressing diacylglycerol acyltransferase (DGAT) and cysteine oleosin (CO) genes designed to increase foliar lipid and biomass accumulation. These populations were either infected with Epichloë festucae var. lolii strain AR1 or Epichloë sp. LpTG-3 strain AR37 to examine relationships between the introduced trait and the endophytic association. Here we report on experiments designed to investigate if expression of the DGAT + CO trait in foliar tissues of perennial ryegrass could negatively impact the grass-endophyte association and vice versa. Both endophyte and plant characters were measured under controlled environment and field conditions. RESULTS Expected relative increases in total fatty acids of 17-58% accrued as a result of DGAT + CO expression with no significant difference between the endophyte-infected and non-infected progeny. Hyphal growth in association with DGAT + CO expression appeared normal when compared to control plants in a growth chamber. There was no significant difference in mycelial biomass for both strains AR1 and AR37, however, Epichloë-derived alkaloid concentrations were significantly lower on some occasions in the DGAT + CO plants compared to the corresponding null-segregant progenies, although these remained within the reported range for bioactivity. CONCLUSIONS These results suggest that the mutualistic association formed between perennial ryegrass and selected Epichloë strains does not influence expression of the host DGAT + CO technology, but that endophyte performance may be reduced under some circumstances. Further investigation will now be required to determine the preferred genetic backgrounds for introgression of the DGAT + CO trait in combination with selected endophyte strains, as grass host genetics is a major determinant to the success of the grass-endophyte association in this species.
Collapse
Grants
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- AgResearch Strategic Science Investment Fund
Collapse
Affiliation(s)
- Kim A Richardson
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand.
| | | | | | - Suhas Kadam
- Division of Plant Sciences & Technology, University of Missouri, Columbia, 65201, MO, USA
- Present address: SGS North America, Crop Sciences, Brookings, SD, 57006, USA
| | - Luke J Cooney
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Kelly A Nelson
- Division of Plant Sciences & Technology, University of Missouri, Novelty, 63460, MO, USA
| | - Ruth Cookson
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | | | - Michele Reid
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Philip Anderson
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Tracey Crowther
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Xiuying Zou
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Dorothy Maher
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Hong Xue
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Richard W Scott
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Anne Allan
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Richard D Johnson
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Stuart D Card
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Wade J Mace
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Nicholas J Roberts
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Gregory Bryan
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| |
Collapse
|
3
|
Górzyńska K, Olejniczak P, Węgrzyn E. The fungus Clonostachys epichloë alters the influence of the Epichloë endophyte on seed germination and the biomass of Puccinellia distans grass. Front Microbiol 2023; 14:1146061. [PMID: 37434716 PMCID: PMC10330949 DOI: 10.3389/fmicb.2023.1146061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
The fungal grass endophyte Epichloë typhina (Pers.) Tul. & C. Tul. (Ascomycota: Clavicipitaceae) grows intercellulary in aerial plant parts and reproduces asexually by invading host seeds. In this phase, it enhances seed production and germination, which accelerates its vertical spread. This relationship may be distorted by other seed-born fungi, whose spread is not so directly dependent on the success of the grass. Recently, the fungus Clonostachys epichloë Schroers has been observed on Puccinellia distans (Jacq.) Parl seeds originating from grass clumps infested with stromata, sexual structures of Epichloë typhina that are formed in spring on some host culms, preventing flower and seed development ('choke disease'). C. epichloë shows mycoparasitic activity toward Epichloë stromata by reducing the production of ascospores, which are responsible for horizontal transmission of the fungus. The aim of this study was to investigate the effect of seed-borne C. epichloë on seed germination, as well as the size and weight of P. distans seedlings and to examine whether C. epichloë alters the influence of Epichloë in the early developmental stages of P. distans. The results showed that if C. epichloë acts on seeds together with E. typhina endophytes, the seeds were negatively affected due to the elimination of the positive effect of the latter in terms of both seed germination rate and seedling length. At the same time, C. epichloë increased the proportion of E. typhina-untreated germinated seeds. Additionally, only the joint action of the two fungi, E. typhina and C. epichloë, effectively stimulated seedling dry mass; the presence of E. typhina alone was not sufficient to noticeably affect seedling size. Based on the increasing commonality of C. epichloë on Epichloë stromata, as well as its potential to be used in biocontrol of 'choke disease', we should take a closer look at this fungus, not only in terms of its mycoparasitic ability, but also in terms of its cumulative impact on the whole Epichloë-grass system.
Collapse
Affiliation(s)
- Karolina Górzyńska
- Department of Systematic and Environmental Botany, Adam Mickiewicz University, Poznań, Poland
| | - Paweł Olejniczak
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - Ewa Węgrzyn
- Department of Systematic and Environmental Botany, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|