1
|
Bhatt PA, Gurav TP, Kondhare KR, Giri AP. MYB proteins: Versatile regulators of plant development, stress responses, and secondary metabolite biosynthetic pathways. Int J Biol Macromol 2024:138588. [PMID: 39672414 DOI: 10.1016/j.ijbiomac.2024.138588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/07/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
MYB proteins are ubiquitous in nature, regulating key aspects of plant growth and development. Although MYB proteins are known for regulating genes involved in secondary metabolite biosynthesis, particularly phenylpropanoids, their roles in terpenoid, glucosinolate, and alkaloid biosynthesis remain less understood. This review explores the structural and functional differences between activator and repressor MYB proteins along with their roles in plant growth, development, stress responses, and secondary metabolite production. MYB proteins serve as central hubs in protein-protein interaction networks that regulate expression of numerous genes involved in the adaptation of plants to varying environmental conditions. Thus, we also highlight key interacting partners of MYB proteins and their roles in these adaptation mechanisms. We further discuss the mechanisms regulating MYB proteins, including autoregulation, epigenetics, and post-transcriptional and post-translational modifications. Overall, we propose MYB proteins as versatile regulators for improving plant traits, stress responses, and secondary metabolite production.
Collapse
Affiliation(s)
- Preshita A Bhatt
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Tanuja P Gurav
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Kirtikumar R Kondhare
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Khan KY, Ali B, Ghani HU, Cui X, Luo X, Ali Z, Ahmed W, Tan J, Lysenko V, Guo Y. Polyvinyl chloride microplastics and drought co-exposure alter rice growth by affecting metabolomics and proteomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177002. [PMID: 39427893 DOI: 10.1016/j.scitotenv.2024.177002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Microplastics, interacting with drought stress, have become threat to crops by altering soil environment. Currently, the effect of combined microplastic and drought stress on crop growth remain poorly understood. In this work, the mechanism of multi-stress responses was investigated under the exposure of polvinylchloride microplastic (PV) and drought (D) individually and in combination (DPV) on rice varieties Hanyou73 and Q280 through proteomics and metabolomic analysis. All treatments negatively affect chlorophyll content, antioxidant enzyme activities, rice grain composition, metabolome and proteomic profiling of both rice varieties. Full rice grain yield was decreased under all treatments except PV treatment in which it was increased in both rice varieties. DPV treatment shows the lowest grain yield and more adverse effects on metabolome by affecting glycerophospholipid metabolism, tryptophan metabolism and alanine, aspartate and glutamate metabolism. Soluble sugar contents were decreased in H73 but in Q280 increased by 159 % under DPV and 123 % in PV treatment, compared to their control group. The results from metabolomics illustrate that glycerophospholipid metabolism is commonly altered in both rice types under all treatments. PV and drought alone and in combination induce extensive alterations in proteomics of rice leaves especially impacting proteins related to binding, translation and photosynthetic process. The results reveal that PV and DPV treatments highly distort the abundance of metabolites and proteins in both rice types, demonstrating that microplastic toxicity effects on rice plants become more severe when combined with drought stress.
Collapse
Affiliation(s)
- Kiran Yasmin Khan
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Barkat Ali
- Food Science Research Institute, National Agricultural Research Centre, Islamabad 44000, Pakistan
| | | | - Xiaoqiang Cui
- School of Environmental Science and Engineering/Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin 300072, China
| | - Xiaohan Luo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zeshan Ali
- Ecotoxicology Research Program, Institute of Plant and Environmental Protection, National Agriculture Research Center, Islamabad 44000, Pakistan
| | - Waqar Ahmed
- Food Science Research Institute, National Agricultural Research Centre, Islamabad 44000, Pakistan
| | - Jinglu Tan
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Vladimir Lysenko
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don 344041, Russia
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China; International Joint Research Center for Intelligent Optical Sensing and Applications at Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Zhu Z, Zhou Y, Liu X, Meng F, Xu C, Chen M. Integrated transcriptomic and metabolomic analyses uncover the key pathways of Limonium bicolor in response to salt stress. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39636615 DOI: 10.1111/pbi.14534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Salinity significantly inhibits plant growth and development. While the recretohalophyte Limonium bicolor can reduce its ion content by secreting salt, the metabolic pathways it employs to adapt to high salt stress remain unclear. This study aims to unravel this enigma through integrated transcriptomic and metabolomic analyses of L. bicolor under salt stress conditions. The results showed that compared to the control (S0), low salt treatment (S1) led to a significant increase in plant growth, photosynthesis efficiency and antioxidant enzyme activity but caused no significant changes in organic soluble substance and ROS contents. However, high salt treatments (S3 and S4) led to a significant decrease in plant growth, photosynthesis efficiency and antioxidant enzyme activity, accompanied by a significant increase in organic soluble substance and ROS contents. A significant increase in phenolic compounds, such as caffeoyl shikimic acid and coniferin, upon the treatments of S1, S3 and S4, and a decrease and increase in flavonoids upon the treatments of S1 and S3 were also observed, respectively. This study also demonstrated that the expression patterns of key genes responsible for the biosynthesis of these metabolites are consistent with the observed trends in their accumulation levels. These results suggest that under low salt stress conditions, the halophyte L. bicolor experiences minimal osmotic and oxidative stress. However, under high salt stress conditions, it suffers severe osmotic and oxidative stress, and the increase in organic soluble substances and flavonoids serves as a key response to these stresses and also represents a good strategy for the alleviation of them.
Collapse
Affiliation(s)
- Zhihui Zhu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Agricultural High-Tech Industrial Demonstration Area of the Yellow River Delta of Shandong Province, Dongying, China
- Dongying Institute, Shandong Normal University, Dongying, China
| | - Yuqing Zhou
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Agricultural High-Tech Industrial Demonstration Area of the Yellow River Delta of Shandong Province, Dongying, China
| | - Xiuyue Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Agricultural High-Tech Industrial Demonstration Area of the Yellow River Delta of Shandong Province, Dongying, China
| | - Fanxia Meng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Agricultural High-Tech Industrial Demonstration Area of the Yellow River Delta of Shandong Province, Dongying, China
| | - Chenhan Xu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Agricultural High-Tech Industrial Demonstration Area of the Yellow River Delta of Shandong Province, Dongying, China
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Agricultural High-Tech Industrial Demonstration Area of the Yellow River Delta of Shandong Province, Dongying, China
- Dongying Institute, Shandong Normal University, Dongying, China
| |
Collapse
|
4
|
Mishra G, Mohapatra SK, Rout GR. Plant membrane transporters function under abiotic stresses: a review. PLANTA 2024; 260:125. [PMID: 39448443 DOI: 10.1007/s00425-024-04548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
MAIN CONCLUSION In the present review, we discussed the detailed signaling cascades via membrane transporters that confer plant tolerance to abiotic stresses and possible significant use in plant development for climate-resilient crops. Plant transporters play significant roles in nutrient uptake, cellular balance, and stress responses. They facilitate the exchange of chemicals and signals across the plant's membrane by signal transduction, osmotic adjustment, and ion homeostasis. Therefore, research into plant transporters is crucial for understanding the mechanics of plant stress tolerance. Transporters have potential applications in crop breeding for increased stress resistance. We discuss new results about various transporter families (ABC, MATE, NRAMP, NRT, PHT, ZIP), including their functions in abiotic stress tolerance and plant development. Furthermore, we emphasize the importance of transporters in plant responses to abiotic stresses such as drought, cold, salt, and heavy metal toxicity, low light, flooding, and nutrient deficiencies. We discuss the transporter pathways and processes involved in diverse plant stress responses. This review discusses recent advances in the role of membrane transporters in abiotic stress tolerance in Arabidopsis and other crops. The review contains the genes discovered in recent years and associated molecular mechanisms that improve plants' ability to survive abiotic stress and their possible future applications by integrating membrane transporters with other technologies.
Collapse
Affiliation(s)
- Gayatri Mishra
- The Department of Biological Sciences, The University of Utah, 257 1400 E, Salt Lake City, UT, 84112, USA.
| | - Subrat Kumar Mohapatra
- The Department of Agricultural Statistics, Institute of Agricultural Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| | - Gyana Ranjan Rout
- The Department of Molecular Biology and Biotechnology, Institute of Agricultural Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India.
| |
Collapse
|
5
|
Jiang A, Liu X, Zhu Z, Chen M. Genome-wide identification of the AP2/ERF gene family from Limonium bicolor and functional characterization of LbAP2/ERF32 under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109035. [PMID: 39146912 DOI: 10.1016/j.plaphy.2024.109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
AP2/ERF transcription factors (TFs) play important roles in plant growth and development, plant morphogenesis and response to environmental stresses. However, their biological roles in recretohalophytes are still not fully revealed. Limonium bicolor L. is a typical recretohalophyte, which secretes excessive salt ions through the salt glands on the epidermis. Here, 64 LbAP2/ERF genes were identified in L. bicolor genome, which were unevenly distributed on the eight chromosomes. Cis-elements related to growth and development, stress response and phytohormone response are distributed in multiple LbAP2/ERF promoters. Expression analysis indicated that LbAP2/ERF genes responsed to NaCl, PEG and ABA. And the salt gland density, salt secretion of leaves and overall salt tolerance of LbAP2/ERF32 silenced lines were significantly reduced. In agreement, the genes related to salt gland development and ion transport were significantly changed in LbAP2/ERF32-silenced lines. Our findings provided fundamental information on the structure and evolutionary relationship of LbAP2/ERF gene family in salt gland development and salt secretion of L. bicolor and gave theoretical guideline for further functional study of LbAP2/ERF genes in response to abiotic stress.
Collapse
Affiliation(s)
- Aijuan Jiang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Shandong, 250014, China; Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China.
| | - Xiuling Liu
- Taishan Polytechnic, Tai'an, 271000, Shandong, China.
| | - Zhihui Zhu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Shandong, 250014, China; Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Shandong, 250014, China; Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China.
| |
Collapse
|
6
|
Zhu Z, Chao E, Jiang A, Chen X, Ning K, Xu H, Chen M. The WRKY gene family in the halophyte Limonium bicolor: identification, expression analysis, and regulation of salt stress tolerance. PLANT CELL REPORTS 2024; 43:167. [PMID: 38865016 DOI: 10.1007/s00299-024-03258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
KEY MESSAGE 63 L. bicolor WRKY genes were identified and their informatics was analyzed. The results suggested that the LbWRKY genes involved in the development and salt secretion of salt glands in L. bicolor. Salt stress, as a universal abiotic stress, severely inhibits the growth and development of plants. WRKY transcription factors play a vital role in plant growth and development, as well as in response to various stresses. Nevertheless, little is known of systematic genome-wide analysis of the WRKY genes in Limonium bicolor, a model recretohalophyte. In this study, 63 L. bicolor WRKY genes were identified (LbWRKY1-63), which were unevenly distributed across seven chromosomes and one scaffold. Based on the structural and phylogenetic characteristics, 63 LbWRKYs are divided into three main groups. Cis-elements in the LbWRKY promoters were related to growth and development, phytohormone responses, and stress responses. Colinearity analysis showed strong colinearity between LbWRKYs and GmWRKYs from soybean (Glycine max). Therefore, LbWRKY genes maybe have similar functions to GmWRKY genes. Expression analysis showed that 28 LbWRKY genes are highly expressed in roots, 9 in stems, 26 in leaves, and 12 in flowers and most LbWRKY genes responded to NaCl, ABA, and PEG6000. Silencing LbWRKY10 reduced salt gland density and salt secretion ability of leaves, and the salt tolerance of the species. Consistent with this, genes associated with salt gland development were markedly down-regulated in the LbWRKY10-silenced lines. Our findings suggested that the LbWRKY genes involved in the development and salt secretion of salt glands in L. bicolor. Our research provides new insights into the functions of the WRKY family in halophytes.
Collapse
Affiliation(s)
- Zhihui Zhu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
- Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China
| | - Erkun Chao
- DongYing Academy of Agricultural Sciences, No. 383 Jiaozhou Road, Dongying, 257000, Shandong, China
| | - Aijuan Jiang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
- Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China
| | - Xiaofang Chen
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, Shandong, China
| | - Kai Ning
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, Shandong, China
| | - Hualing Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, Shandong, China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China.
- Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China.
| |
Collapse
|
7
|
Yang Z, Zhang Z, Qiao Z, Guo X, Wen Y, Zhou Y, Yao C, Fan H, Wang B, Han G. The RING zinc finger protein LbRZF1 promotes salt gland development and salt tolerance in Limonium bicolor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:787-809. [PMID: 38477645 DOI: 10.1111/jipb.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The recretohalophyte Limonium bicolor thrives in high-salinity environments because salt glands on the above-ground parts of the plant help to expel excess salt. Here, we characterize a nucleus-localized C3HC4 (RING-HC)-type zinc finger protein of L. bicolor named RING ZINC FINGER PROTEIN 1 (LbRZF1). LbRZF1 was expressed in salt glands and in response to NaCl treatment. LbRZF1 showed no E3 ubiquitin ligase activity. The phenotypes of overexpression and knockout lines for LbRZF1 indicated that LbRZF1 positively regulated salt gland development and salt tolerance in L. bicolor. lbrzf1 mutants had fewer salt glands and secreted less salt than did the wild-type, whereas LbRZF1-overexpressing lines had opposite phenotypes, in keeping with the overall salt tolerance of these plants. A yeast two-hybrid screen revealed that LbRZF1 interacted with LbCATALASE2 (LbCAT2) and the transcription factor LbMYB113, leading to their stabilization. Silencing of LbCAT2 or LbMYB113 decreased salt gland density and salt tolerance. The heterologous expression of LbRZF1 in Arabidopsis thaliana conferred salt tolerance to this non-halophyte. We also identified the transcription factor LbMYB48 as an upstream regulator of LbRZF1 transcription. The study of LbRZF1 in the regulation network of salt gland development also provides a good foundation for transforming crops and improving their salt resistance.
Collapse
Affiliation(s)
- Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Ziwei Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Ziqi Qiao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Xueying Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Yixuan Wen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Yingxue Zhou
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Chunliang Yao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta of Shandong Province, Dongying, 257000, China
- Dongying Institute, Shandong Normal University, Dongying, 257000, China
| |
Collapse
|
8
|
Zhang M, Hou X, Yang H, Wang J, Li Y, Liu Q, Zhang C, Wang B, Chen M. The NAC gene family in the halophyte Limonium bicolor: Identification, expression analysis, and regulation of abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108462. [PMID: 38484683 DOI: 10.1016/j.plaphy.2024.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/10/2024] [Accepted: 02/21/2024] [Indexed: 04/02/2024]
Abstract
NAC transcription factors regulate plant growth, development, and stress responses. However, the number, types, and biological functions of Limonium bicolor LbNAC genes have remained elusive. L. bicolor secretes excessive salt ions through salt glands on its stems and leaves to reduce salt-induced damage. Here, we identified 63 NAC members (LbNAC1-63) in L. bicolor, which were unevenly distributed across eight chromosomes. Cis-elements in the LbNAC promoters were related to growth and development, stress responses, and phytohormone responses. We observed strong colinearity between LbNACs and GmNACs from soybean (Glycine max). Thus, LbNAC genes may share similar functions with GmNAC genes. Expression analysis indicated that 16 LbNAC genes are highly expressed in roots, stems, leaves, and flowers, whereas 17 LbNAC genes were highly expressed throughout salt gland development, suggesting that they may regulate this developmental stage. Silencing LbNAC54 in L. bicolor decreased salt gland density, salt secretion from leaves, and overall salt tolerance. In agreement, genes related to salt gland development were significantly downregulated in LbNAC54-silenced lines. Our findings shed light on LbNAC genes and help elucidate salt gland development and salt secretion in L. bicolor. Our data also provide insight into NAC functions in halophytes.
Collapse
Affiliation(s)
- Mingjing Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, 250014, China; Laboratory of Plant Molecular Biology & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, 276000, China
| | - Xueting Hou
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, 250014, China
| | - Hui Yang
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257000, China
| | - Juying Wang
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257000, China
| | - Ying Li
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257000, China
| | - Qing Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, 250014, China
| | - Caixia Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, 250014, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, 250014, China
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, 250014, China; Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China.
| |
Collapse
|
9
|
Liu J, Meng F, Jiang A, Hou X, Liu Q, Fan H, Chen M. Exogenous 6-BA enhances salt tolerance of Limonium bicolor by increasing the number of salt glands. PLANT CELL REPORTS 2023; 43:12. [PMID: 38135797 DOI: 10.1007/s00299-023-03104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/18/2023] [Indexed: 12/24/2023]
Abstract
KEY MESSAGE Exogenous 6-BA can increase endogenous hormone content, improve photosynthesis, decrease Na+ by increasing leaf salt gland density and salt secretion ability, and reduce ROS content so that it can promote L. bicolor growth. 6-benzyl adenine (6-BA) is an artificial cytokinin and has been widely applied to improving plant adaptation to stress. However, it is rarely reported that 6-BA alleviates salt damage of halophytes. In this paper, we treated Limonium bicolor seedlings, a recretohalophyte with high medicinal and ornamental values, with 300 mM NaCl and different concentrations of 6-BA (0.5, 1.0, and 1.5 mg/L) and measured plant growth, physiological index, the density of salt gland, and the salt secretion ability of leaves. The results showed that exogenous applications 1.0 mg/L 6-BA significantly improved plant growth and photosynthesis, increased cytokinin and auxins contents, K+ and organic soluble matter contents, the activities of SOD, CAT, APX, and POD, and decreased Na+, H2O2, and O2- contents compared to that treated with 300 mM NaCl. Further research showed that exogenous 6-BA significantly increased the density of salt gland and the salt secretion ability of leaves by upregulating the expression of the salt gland developmental genes, therefore, can secrete more excess Na+, and thus reduces the Na+ concentration in leaves, which can alleviate Na+ damage to the species. In all, exogenous 1.0 mg/L 6-BA can increase endogenous hormone, improve photosynthesis, decrease Na+ by increasing secretion ability, and reduce ROS content of L. bicolor so that it can improve the growth. These results above systematically prove the new role of 6-BA in salt tolerance of L. bicolor.
Collapse
Affiliation(s)
- Jing Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Fanxia Meng
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Aijuan Jiang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Xueting Hou
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Qing Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China.
- Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China.
| |
Collapse
|
10
|
Zhang C, Zhu Z, Jiang A, Liu Q, Chen M. Genome-wide identification of the mitogen-activated kinase gene family from Limonium bicolor and functional characterization of LbMAPK2 under salt stress. BMC PLANT BIOLOGY 2023; 23:565. [PMID: 37964233 PMCID: PMC10647163 DOI: 10.1186/s12870-023-04589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Mitogen-activated protein kinases (MAPKs) are ubiquitous signal transduction components in eukaryotes. In plants, MAPKs play an essential role in growth and development, phytohormone regulation, and abiotic stress responses. The typical recretohalophyte Limonium bicolor (Bunge) Kuntze has multicellular salt glands on its stems and leaves; these glands secrete excess salt ions from its cells to mitigate salt damage. The number, type, and biological function of L. bicolor MAPK genes are unknown. RESULTS We identified 20 candidate L. bicolor MAPK genes, which can be divided into four groups. Of these 20 genes, 17 were anchored to 7 chromosomes, while LbMAPK18, LbMAPK19, and LbMAPK20 mapped to distinct scaffolds. Structure analysis showed that the predicted protein LbMAPK19 contains the special structural motif TNY in its activation loop, whereas the other LbMAPK members harbor the conserved TEY or TDY motif. The promoters of most LbMAPK genes carry cis-acting elements related to growth and development, phytohormones, and abiotic stress. LbMAPK1, LbMAPK2, LbMAPK16, and LbMAPK20 are highly expressed in the early stages of salt gland development, whereas LbMAPK4, LbMAPK5, LbMAPK6, LbMAPK7, LbMAPK11, LbMAPK14, and LbMAPK15 are highly expressed during the late stages. These 20 LbMAPK genes all responded to salt, drought and ABA stress. We explored the function of LbMAPK2 via virus-induced gene silencing: knocking down LbMAPK2 transcript levels in L. bicolor resulted in fewer salt glands, lower salt secretion ability from leaves, and decreased salt tolerance. The expression of several genes [LbTTG1 (TRANSPARENT TESTA OF GL1), LbCPC (CAPRICE), and LbGL2 (GLABRA2)] related to salt gland development was significantly upregulated in LbMAPK2 knockdown lines, while the expression of LbEGL3 (ENHANCER OF GL3) was significantly downregulated. CONCLUSION These findings increase our understanding of the LbMAPK gene family and will be useful for in-depth studies of the molecular mechanisms behind salt gland development and salt secretion in L. bicolor. In addition, our analysis lays the foundation for exploring the biological functions of MAPKs in an extreme halophyte.
Collapse
Affiliation(s)
- Caixia Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Shandong, 250014, China
| | - Zhihui Zhu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Shandong, 250014, China
| | - Aijuan Jiang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Shandong, 250014, China
| | - Qing Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Shandong, 250014, China
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Shandong, 250014, China.
- Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, Shandong, 257000, China.
| |
Collapse
|