1
|
Moreira D, Kaur D, Fourbert-Mendes S, Showalter AM, Coimbra S, Pereira AM. Eight hydroxyproline-O-galactosyltransferases play essential roles in female reproductive development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112231. [PMID: 39154893 DOI: 10.1016/j.plantsci.2024.112231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
In angiosperms, ovules give rise to seeds upon fertilization. Thus, seed formation is dependent on both successful ovule development and tightly controlled communication between female and male gametophytes. During establishment of these interactions, cell walls play a pivotal role, especially arabinogalactan-proteins (AGPs). AGPs are highly glycosylated proteins decorated by arabinogalactan side chains, representing 90 % of the AGP molecule. AGP glycosylation is initiated by a reaction catalysed by hydroxyproline-O-galactosyltransferases (Hyp-GALTs), specifically eight of them (GALT2-9), which add the first galactose to Hyp residues. Five Hyp-GALTs (GALT2, 5, 7, 8 and 9) were previously described as essential for AGP functions in pollen and ovule development, pollen-pistil interactions, and seed morphology. In the present work, a higher order Hyp-GALT mutant (23456789) was studied, with a high degree of under-glycosylated AGPs, to gain deeper insight into the crucial roles of these eight enzymes in female reproductive tissues. Notably, the 23456789 mutant demonstrated a high quantity of unfertilized ovules, displaying abnormal callose accumulation both at the micropylar region and, sometimes, throughout the entire embryo sac. Additionally, this mutant displayed ovules with abnormal embryo sacs, had a disrupted spatiotemporal distribution of AGPs in female reproductive tissues, and showed abnormal seed and embryo development, concomitant with a reduction in AGP-GlcA levels. This study revealed that at least three more enzymes exhibit Hyp-O-GALT activity in Arabidopsis (GALT3, 4 and 6), and reinforces the crucial importance of AGP carbohydrates in carrying out the biological functions of AGPs during plant reproduction.
Collapse
Affiliation(s)
- Diana Moreira
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Dasmeet Kaur
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979, USA
| | - Sara Fourbert-Mendes
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Allan M Showalter
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979, USA
| | - Sílvia Coimbra
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Ana Marta Pereira
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal.
| |
Collapse
|
2
|
Lopes AL, Moreira D, Pereira AM, Ferraz R, Mendes S, Pereira LG, Colombo L, Coimbra S. AGPs as molecular determinants of reproductive development. ANNALS OF BOTANY 2023; 131:827-838. [PMID: 36945741 PMCID: PMC10184450 DOI: 10.1093/aob/mcad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/15/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Morphogenesis occurs through accurate interaction between essential players to generate highly specialized plant organs. Fruit structure and function are triggered by a neat transcriptional control involving distinct regulator genes encoding transcription factors (TFs) or signalling proteins, such as the C2H2/C2HC zinc-finger NO TRANSMITTING TRACT (NTT) or the MADS-box protein SEEDSTICK (STK), which are important in setting plant reproductive competence, feasibly by affecting cell wall polysaccharide and lipid distribution. Arabinogalactan proteins (AGPs) are major components of the cell wall and are thought to be involved in the reproductive process as important players in specific stages of development. The detection of AGPs epitopes in reproductive tissues of NTT and other fruit development-related TFs, such as MADS-box proteins including SHATTERPROOF1 (SHP1), SHP2 and STK, was the focus of this study. METHODS We used fluorescence microscopy to perform immunolocalization analyses on stk and ntt single mutants, on the ntt stk double mutant and on the stk shp1 shp2 triple mutant using specific anti-AGP monoclonal antibodies. In these mutants, the expression levels of selected AGP genes were also measured by quantitative real-time PCR and compared with the respective expression in wild-type (WT) plants. KEY RESULTS The present immunolocalization study collects information on the distribution patterns of specific AGPs in Arabidopsis female reproductive tissues, complemented by the quantification of AGP expression levels, comparing WT, stk and ntt single mutants, the ntt stk double mutant and the stk shp1 shp2 triple mutant. CONCLUSIONS These findings reveal distinct AGP distribution patterns in different developmental mutants related to the female reproductive unit in Arabidopsis. The value of the immunofluorescence labelling technique is highlighted in this study as an invaluable tool to dissect the remodelling nature of the cell wall in developmental processes.
Collapse
Affiliation(s)
- Ana Lúcia Lopes
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Biosystems and Integrative Sciences Institute – BioISI, Porto, Portugal
| | - Diana Moreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ana Marta Pereira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ricardo Ferraz
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Sara Mendes
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Luís Gustavo Pereira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- GreenUPorto Sustainable Agrifood Production Research Centre, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Milano, Italy
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Moreira D, Kaur D, Pereira AM, Held MA, Showalter AM, Coimbra S. Type II arabinogalactans initiated by hydroxyproline-O-galactosyltransferases play important roles in pollen-pistil interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:371-389. [PMID: 36775989 DOI: 10.1111/tpj.16141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
Arabinogalactan-proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high sugar content and are widely distributed in the plant kingdom. AGPs have long been suggested to play important roles in sexual plant reproduction. The synthesis of their complex carbohydrates is initiated by a family of hydroxyproline galactosyltransferase (Hyp-GALT) enzymes which add the first galactose to Hyp residues in the protein backbone. Eight Hyp-GALT enzymes have been identified so far, and in the present work a mutant affecting five of these enzymes (galt2galt5galt7galt8galt9) was analyzed regarding the reproductive process. The galt25789 mutant presented a low seed set, and reciprocal crosses indicated a significant female gametophytic contribution to this mutant phenotype. Mutant ovules revealed abnormal callose accumulation inside the embryo sac and integument defects at the micropylar region culminating in defects in pollen tube reception. In addition, immunolocalization and biochemical analyses allowed the detection of a reduction in the amount of glucuronic acid in mutant ovary AGPs. Dramatically low amounts of high-molecular-weight Hyp-O-glycosides obtained following size exclusion chromatography of base-hydrolyzed mutant AGPs compared to the wild type indicated the presence of underglycosylated AGPs in the galt25789 mutant, while the monosaccharide composition of these Hyp-O-glycosides displayed no significant changes compared to the wild-type Hyp-O-glycosides. The present work demonstrates the functional importance of the carbohydrate moieties of AGPs in ovule development and pollen-pistil interactions.
Collapse
Affiliation(s)
- Diana Moreira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Dasmeet Kaur
- Department of Environmental & Plant Biology, Ohio University, Athens, Ohio, 45701-2979, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, 45701, USA
| | - Ana Marta Pereira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Michael A Held
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, 45701, USA
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, 45701, USA
| | - Allan M Showalter
- Department of Environmental & Plant Biology, Ohio University, Athens, Ohio, 45701-2979, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, 45701, USA
| | - Sílvia Coimbra
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|