1
|
Shakir AM, Geng M, Tian J, Wang R. Dissection of QTLs underlying the genetic basis of drought resistance in wheat: a meta-analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:25. [PMID: 39786445 DOI: 10.1007/s00122-024-04811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Wheat (Triticum aestivum L.) is one of the most important cereal crops, with its grain serving as a predominant staple food source on a global scale. However, there are many biotic and abiotic stresses challenging the stability of wheat production. Among the abiotic stresses, drought is recognized as a significant stress and poses a substantial threat to food production and quality throughout the world. Raising drought tolerance of wheat varieties through genetic regulation is therefore considered as one of the most effective ways to combat the challenges caused by drought stress. Meta-QTL analysis has demonstrated its effectiveness in identifying consensus QTL regions in wheat drought resistance in numerous instances. In this study, we present a comprehensive meta-analysis aimed at unraveling the drought tolerance genetic basis associated with agronomic traits in bread wheat. Extracting data from 34 previously published studies, we aggregated a corpus of 1291 Quantitative Trait Loci (QTL) pertinent to wheat drought tolerance. Then, the translation of the consensus genetic map yielded a comprehensive compendium of 49 distinct MQTLs, each associated with diverse agronomic traits. Prominently featured among the MQTLs were MQTLs 1.1, 1.7, 1.8 (1D), 4.1 (4A), 4.6 (4D), 5.2 (5B), 6.6 (6B), and 7.2 (7B), distinguished as pivotal MQTLs offering significant potential for application in marker-assisted breeding endeavors. Altogether, a total of 66 putative candidate genes (CGs)-related drought tolerance were identified. This work illustrates a translational research approach in transferring information from published mapping studies to genomic regions hosting major QTLs governing key agronomical traits in wheat.
Collapse
Affiliation(s)
- Arif Mehmood Shakir
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, 071000, Hebei, China
| | - Miaomiao Geng
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, 071000, Hebei, China
| | - Jiahao Tian
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, 071000, Hebei, China
| | - Ruihui Wang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, China.
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, 071000, Hebei, China.
| |
Collapse
|
2
|
Ma Y, Tang M, Wang M, Yu Y, Ruan B. Advances in Understanding Drought Stress Responses in Rice: Molecular Mechanisms of ABA Signaling and Breeding Prospects. Genes (Basel) 2024; 15:1529. [PMID: 39766796 PMCID: PMC11675997 DOI: 10.3390/genes15121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Drought stress is a pivotal environmental factor impacting rice production and presents a significant challenge to sustainable agriculture worldwide. This review synthesizes the latest research advancements in the regulatory mechanisms and signaling pathways that rice employs in response to drought stress. It elaborates on the adaptive changes and molecular regulatory mechanisms that occur in rice under drought conditions. The review highlights the perception and initial transmission of drought signals, key downstream signaling networks such as the MAPK and Ca2+ pathways, and their roles in modulating drought responses. Furthermore, the discussion extends to hormonal signaling, especially the crucial role of abscisic acid (ABA) in drought responses, alongside the identification of drought-resistant genes and the application of gene-editing technologies in enhancing rice drought resilience. Through an in-depth analysis of these drought stress regulatory signaling pathways, this review aims to offer valuable insights and guidance for future rice drought resistance breeding and agricultural production initiatives.
Collapse
Affiliation(s)
| | | | | | | | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.M.); (M.T.); (M.W.); (Y.Y.)
| |
Collapse
|
3
|
Töpfer V, Melzer M, Snowdon RJ, Stahl A, Matros A, Wehner G. PEG treatment is unsuitable to study root related traits as it alters root anatomy in barley (Hordeum vulgare L.). BMC PLANT BIOLOGY 2024; 24:856. [PMID: 39266950 PMCID: PMC11396634 DOI: 10.1186/s12870-024-05529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The frequency and severity of abiotic stress events, especially drought, are increasing due to climate change. The plant root is the most important organ for water uptake and the first to be affected by water limitation. It is therefore becoming increasingly important to include root traits in studies on drought stress tolerance. However, phenotyping under field conditions remains a challenging task. In this study, plants were grown in a hydroponic system with polyethylene glycol as an osmotic stressor and in sand pots to examine the root system of eleven spring barley genotypes. The root anatomy of two genotypes with different response to drought was investigated microscopically. RESULTS Root diameter increased significantly (p < 0.05) under polyethylene glycol treatment by 54% but decreased significantly (p < 0.05) by 12% under drought stress in sand pots. Polyethylene glycol treatment increased root tip diameter (51%) and reduced diameter of the elongation zone (14%) compared to the control. Under drought stress, shoot mass of plants grown in sand pots showed a higher correlation (r = 0.30) with the shoot mass under field condition than polyethylene glycol treated plants (r = -0.22). CONCLUSION These results indicate that barley roots take up polyethylene glycol by the root tip and polyethylene glycol prevents further water uptake. Polyethylene glycol-triggered osmotic stress is therefore unsuitable for investigating root morphology traits in barley. Root architecture of roots grown in sand pots is more comparable to roots grown under field conditions.
Collapse
Affiliation(s)
- Veronic Töpfer
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Michael Melzer
- Department of Structural Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Andrea Matros
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany.
| | - Gwendolin Wehner
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| |
Collapse
|
4
|
Kalra A, Goel S, Elias AA. Understanding role of roots in plant response to drought: Way forward to climate-resilient crops. THE PLANT GENOME 2024; 17:e20395. [PMID: 37853948 DOI: 10.1002/tpg2.20395] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
Drought stress leads to a significant amount of agricultural crop loss. Thus, with changing climatic conditions, it is important to develop resilience measures in agricultural systems against drought stress. Roots play a crucial role in regulating plant development under drought stress. In this review, we have summarized the studies on the role of roots and root-mediated plant responses. We have also discussed the importance of root system architecture (RSA) and the various structural and anatomical changes that it undergoes to increase survival and productivity under drought. Various genes, transcription factors, and quantitative trait loci involved in regulating root growth and development are also discussed. A summarization of various instruments and software that can be used for high-throughput phenotyping in the field is also provided in this review. More comprehensive studies are required to help build a detailed understanding of RSA and associated traits for breeding drought-resilient cultivars.
Collapse
Affiliation(s)
- Anmol Kalra
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Ani A Elias
- ICFRE - Institute of Forest Genetics and Tree Breeding (ICFRE - IFGTB), Coimbatore, India
| |
Collapse
|
5
|
Daryani P, Amirbakhtiar N, Soorni J, Loni F, Darzi Ramandi H, Shobbar ZS. Uncovering the Genomic Regions Associated with Yield Maintenance in Rice Under Drought Stress Using an Integrated Meta-Analysis Approach. RICE (NEW YORK, N.Y.) 2024; 17:7. [PMID: 38227151 DOI: 10.1186/s12284-024-00684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
The complex trait of yield is controlled by several quantitative trait loci (QTLs). Given the global water deficit issue, the development of rice varieties suitable for non-flooded cultivation holds significant importance in breeding programs. The powerful approach of Meta-QTL (MQTL) analysis can be used for the genetic dissection of complicated quantitative traits. In the current study, a comprehensive MQTL analysis was conducted to identify consistent QTL regions associated with drought tolerance and yield-related traits under water deficit conditions in rice. In total, 1087 QTLs from 134 rice populations, published between 2000 to 2021, were utilized in the analysis. Distinct MQTL analysis of the relevant traits resulted in the identification of 213 stable MQTLs. The confidence interval (CI) for the detected MQTLs was between 0.12 and 19.7 cM. The average CI of the identified MQTLs (4.68 cM) was 2.74 times narrower compared to the average CI of the initial QTLs. Interestingly, 63 MQTLs coincided with SNP peak positions detected by genome-wide association studies for yield and drought tolerance-associated traits under water deficit conditions in rice. Considering the genes located both in the QTL-overview peaks and the SNP peak positions, 19 novel candidate genes were introduced, which are associated with drought response index, plant height, panicle number, biomass, and grain yield. Moreover, an inclusive MQTL analysis was performed on all the traits to obtain "Breeding MQTLs". This analysis resulted in the identification of 96 MQTLs with a CI ranging from 0.01 to 9.0 cM. The mean CI of the obtained MQTLs (2.33 cM) was 4.66 times less than the mean CI of the original QTLs. Thirteen MQTLs fulfilling the criteria of having more than 10 initial QTLs, CI < 1 cM, and an average phenotypic variance explained greater than 10%, were designated as "Breeding MQTLs". These findings hold promise for assisting breeders in enhancing rice yield under drought stress conditions.
Collapse
Affiliation(s)
- Parisa Daryani
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Nazanin Amirbakhtiar
- National Plant Gene Bank of Iran, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Jahad Soorni
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Fatemeh Loni
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Hadi Darzi Ramandi
- Department of Plant Production and Genetics, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
6
|
Padmashree R, Barbadikar KM, Honnappa, Magar ND, Balakrishnan D, Lokesha R, Gireesh C, Siddaiah AM, Madhav MS, Ramesha YM, Bharamappanavara M, Phule AS, Senguttuvel P, Diwan JR, Subrahmanyam D, Sundaram RM. Genome-wide association studies in rice germplasm reveal significant genomic regions for root and yield-related traits under aerobic and irrigated conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1143853. [PMID: 37538056 PMCID: PMC10395336 DOI: 10.3389/fpls.2023.1143853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/19/2023] [Indexed: 08/05/2023]
Abstract
The development of nutrient-use efficient rice lines is a priority amidst the changing climate and depleting resources viz., water, land, and labor for achieving sustainability in rice cultivation. Along with the traditional transplanted irrigated system of cultivation, the dry direct-seeded aerobic system is gaining ground nationwide. The root-related traits play a crucial role in nutrient acquisition, adaptation and need to be concentrated along with the yield-attributing traits. We phenotyped an association panel of 118 rice lines for seedling vigour index (SVI) traits at 14 and 21 days after sowing (DAS), root-related traits at panicle initiation (PI) stage in polythene bags under controlled aerobic condition, yield and yield-related traits under the irrigated condition at ICAR-IIRR, Hyderabad, Telangana; irrigated and aerobic conditions at ARS, Dhadesugur, Raichur, Karnataka. The panel was genotyped using simple sequence repeats (SSR) markers and genome-wide association studies were conducted for identifying marker-trait associations (MTAs). Significant correlations were recorded for root length, root dry weight with SVI, root volume at the PI stage, number of productive tillers per plant, spikelet fertility, the total number of grains per panicle with grain yield per plant under irrigated conditions, and the total number of grains per panicle with grain yield per plant under aerobic condition. The panel was divided into three sub-groups (K = 3) and correlated with the principal component analysis. The maximum number of MTAs were found on chromosomes 2, 3, and 12 with considerable phenotypic variability. Consistent MTAs were recorded for SVI traits at 14 and 21 DAS (RM25310, RM80, RM22961, RM1385), yield traits under irrigated conditions (RM2584, RM5179, RM410, RM20698, RM14753) across years at ICAR-IIRR, grain yield per plant (RM22961, RM1146) under the aerobic condition, grain yield per plant at irrigated ICAR-IIRR and SVI (RM5501), root traits at PI stage (RM2584, RM80, RM410, RM1146, RM18472). Functionally relevant genes near the MTAs through in-silico expression analysis in root and panicle tissues viz., HBF2 bZIP transcription factor, WD40 repeat-like domain, OsPILS6a auxin efflux carrier, WRKY108, OsSCP42, OsMADS80, nodulin-like domain-containing protein, amino acid transporter using various rice expression databases were identified. The identified MTAs and rice lines having high SVI traits (Langphou, TI-128, Mouli, TI-124, JBB-631-1), high yield under aerobic (Phouren, NPK-43, JBB-684, Ratnamudi, TI-112), irrigated conditions (KR-209, KR-262, Phouren, Keibi-Phou, TI-17), robust root traits like root length (MoirangPhou-Angouba, Wangoo-Phou, JBB-661, Dissi, NPK-45), root volume (Ratnachudi, KJ-221, Mow, Heimang-Phou, PUP-229) can be further employed in breeding programs for the targeted environments aimed at improving seedling vigour, yield-related traits under irrigated condition, aerobic condition as adaptability to water-saving technology.
Collapse
Affiliation(s)
- Revadi Padmashree
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
- University of Agricultural Sciences (UAS), Raichur, India
| | - Kalyani M. Barbadikar
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Honnappa
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
- University of Agricultural Sciences (UAS), Raichur, India
| | - Nakul D. Magar
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
- Chaudhary Charan Singh University, Meerut, India
| | - Divya Balakrishnan
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - R. Lokesha
- University of Agricultural Sciences (UAS), Raichur, India
| | - C. Gireesh
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Anantha M. Siddaiah
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Maganti Sheshu Madhav
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Y. M Ramesha
- Agricultural Research Station (ARS) Dhadesugur, University of Agricultural Sciences (UAS), Raichur, India
| | | | - Amol S. Phule
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - P. Senguttuvel
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - J. R. Diwan
- University of Agricultural Sciences (UAS), Raichur, India
| | - D. Subrahmanyam
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Raman Menakshi Sundaram
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
| |
Collapse
|
7
|
Ghorbanzadeh Z, Hamid R, Jacob F, Zeinalabedini M, Salekdeh GH, Ghaffari MR. Comparative metabolomics of root-tips reveals distinct metabolic pathways conferring drought tolerance in contrasting genotypes of rice. BMC Genomics 2023; 24:152. [PMID: 36973662 PMCID: PMC10044761 DOI: 10.1186/s12864-023-09246-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Abstract
Background
The mechanisms underlying rice root responses to drought during the early developmental stages are yet unknown.
Results
This study aimed to determine metabolic differences in IR64, a shallow-rooting, drought-susceptible genotype, and Azucena, a drought-tolerant and deep-rooting genotype under drought stress. The morphological evaluation revealed that Azucena might evade water stress by increasing the lateral root system growth, the root surface area, and length to access water. At the same time, IR64 may rely mainly on cell wall thickening to tolerate stress. Furthermore, significant differences were observed in 49 metabolites in IR64 and 80 metabolites in Azucena, for which most metabolites were implicated in secondary metabolism, amino acid metabolism, nucleotide acid metabolism and sugar and sugar alcohol metabolism. Among these metabolites, a significant positive correlation was found between allantoin, galactaric acid, gluconic acid, glucose, and drought tolerance. These metabolites may serve as markers of drought tolerance in genotype screening programs. Based on corresponding biological pathways analysis of the differentially abundant metabolites (DAMs), biosynthesis of alkaloid-derivatives of the shikimate pathway, fatty acid biosynthesis, purine metabolism, TCA cycle and amino acid biosynthesis were the most statistically enriched biological pathway in Azucena in drought response. However, in IR64, the differentially abundant metabolites of starch and sucrose metabolism were the most statistically enriched biological pathways.
Conclusion
Metabolic marker candidates for drought tolerance were identified in both genotypes. Thus, these markers that were experimentally determined in distinct metabolic pathways can be used for the development or selection of drought-tolerant rice genotypes.
Collapse
|
8
|
Kou X, Han W, Kang J. Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:1085409. [PMID: 36570905 PMCID: PMC9780461 DOI: 10.3389/fpls.2022.1085409] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 05/31/2023]
Abstract
Plants are exposed to increasingly severe drought events and roots play vital roles in maintaining plant survival, growth, and reproduction. A large body of literature has investigated the adaptive responses of root traits in various plants to water stress and these studies have been reviewed in certain groups of plant species at a certain scale. Nevertheless, these responses have not been synthesized at multiple levels. This paper screened over 2000 literatures for studies of typical root traits including root growth angle, root depth, root length, root diameter, root dry weight, root-to-shoot ratio, root hair length and density and integrates their drought responses at genetic and morphological scales. The genes, quantitative trait loci (QTLs) and hormones that are involved in the regulation of drought response of the root traits were summarized. We then statistically analyzed the drought responses of root traits and discussed the underlying mechanisms. Moreover, we highlighted the drought response of 1-D and 2-D root length density (RLD) distribution in the soil profile. This paper will provide a framework for an integrated understanding of root adaptive responses to water deficit at multiple scales and such insights may provide a basis for selection and breeding of drought tolerant crop lines.
Collapse
Affiliation(s)
- Xinyue Kou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Weihua Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Jian Kang
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
9
|
Molecular Characterization and Drought Resistance of GmNAC3 Transcription Factor in Glycine max (L.) Merr. Int J Mol Sci 2022; 23:ijms232012378. [PMID: 36293235 PMCID: PMC9604218 DOI: 10.3390/ijms232012378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Soybean transcription factor GmNAC plays important roles in plant resistance to environmental stresses. In this study, GmNAC3 was cloned in the drought tolerant soybean variety “Jiyu47”, with the molecular properties of GmNAC3 characterized to establish its candidacy as a NAC transcription factor. The yeast self-activation experiments revealed the transcriptional activation activity of GmNAC3, which was localized in the nucleus by the subcellular localization analysis. The highest expression of GmNAC3 was detected in roots in the podding stage of soybean, and in roots of soybean seedlings treated with 20% PEG6000 for 12 h, which was 16 times higher compared with the control. In the transgenic soybean hairy roots obtained by the Agrobacterium-mediated method treated with 20% PEG6000 for 12 h, the activities of superoxide dismutase, peroxidase, and catalase and the content of proline were increased, the malondialdehyde content was decreased, and the expressions of stress resistance-related genes (i.e., APX2, LEA14, 6PGDH, and P5CS) were up-regulated. These expression patterns were confirmed by transgenic Arabidopsis thaliana with the overexpression of GmNAC3. This study provided strong scientific evidence to support further investigation of the regulatory function of GmNAC3 in plant drought resistance and the molecular mechanisms regulating the plant response to environmental stresses.
Collapse
|