1
|
Zhou D, Song R, Fang Y, Liu R, You C, Wang Y, Huang L. Global identification and regulatory network analysis reveal the significant roles of lncRNAs during anther and pollen development in Arabidopsis. PLANT CELL REPORTS 2025; 44:44. [PMID: 39883185 DOI: 10.1007/s00299-024-03412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
KEY MESSAGE A high-throughput sequencing identified 1283 lncRNAs in anthers at different stages in Arabidopsis and their relationship with protein-coding genes and miRNAs during anther and pollen development were analyzed. Long non-coding RNAs (lncRNAs) are important regulatory molecules involved in various biological processes. However, their roles in male reproductive development and interactions with miRNAs remained elusive. In this study, a high-throughput sequencing of anthers at different developmental stages in Arabidopsis identified 1283 lncRNAs including 524 differentially expressed lncRNAs (DELs). Most of these DELs exhibited positive correlations with the expression patterns of adjacent protein-coding genes. Weighted gene co-expression network analysis (WGCNA) revealed that protein-coding genes targeted by DELs in four modules related to the tetrad stage were associated with functions such as pollen wall formation, pollen germination, or pollen tube growth, respectively. Furthermore, five, 10, and 11 lncRNAs were predicted as miRNAs' endogenous target mimics (eTMs), precursors, and natural antisense transcripts of pri-miRNA, respectively. Remarkably, the lncRNA, host gene of ath-miR167a (ath-miR167aHG), predicted as the precursor of miR167a, was selected for function validation. Its overexpression resulted in the up-regulation of miR167a and the subsequent down-regulation of miR167a's target genes ARF6 and ARF8, demonstrating a functional interaction between ath-miR167aHG and miR167a. The transgenic plants showed delayed flowering, shorter filaments, abnormal anther dehiscence, and undeveloped siliques ultimately, suggesting a role of ath-miR167aHG in male reproductive development. Collectively, our research shed new light on the functions of lncRNAs in male reproductive development and uncovered the unique interactions between lncRNAs and miRNAs.
Collapse
Affiliation(s)
- Dong Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ruiqi Song
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Yuan Fang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Rui Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Chenjiang You
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yijie Wang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China.
- Hainan Institute of Zhejiang University, Sanya, China.
| |
Collapse
|
2
|
Zhang W, Wang D, Yin Z, Tang L, Pan X, Guo C. RNA sequencing and functional analysis uncover key long non-coding RNAs involved in regulating pollen fertility during the process of gametocidal action in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1826-1841. [PMID: 39401089 DOI: 10.1111/tpj.17082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 12/11/2024]
Abstract
Gametocidal (Gc) chromosomes have been widely utilized in genetic breeding due to their ability to induce chromosomal breakage and eliminate gametes that lack them. Long noncoding RNAs (lncRNAs) have various functional mechanisms in regulating pollen and anther development; however, their regulatory contributions to Gc action are still unknown. Here, we identified 2824 differentially expressed lncRNAs (DE-lncRNAs) from the anther tissues of Triticum aestivum cv. Chinese Spring (CS) and Chinese Spring-Gc 3C chromosome monosomic addition line (CS-3C) through sequencing. In this study, we predicted 161 target mRNAs for 145 DE-lncRNAs, including 104 cis-regulatory, 60 trans-regulatory, and three both cis-regulatory and trans-regulatory manner. Combined with our previous miRNA sequencing data, 241 DE-lncRNAs functioned as potential endogenous target mimics (eTMs) for 84 differentially expressed microRNAs (DE-miRNAs, including 12 novel miRNAs). The results of transient transformation in tobacco leaves indicated that L006278 could bind to MTCONS_00006277, which encoded a calcineurin CBL-interacting protein kinase 19-like, and suppress its expression. Furthermore, L117735 could function as an eTM for tae-miR9657b-3p, and L056972 could function as an eTM for gc-m2240-5p. To explore the function of lncRNAs in the process of Gc action, we transformed L006278, an up-regulated lncRNA in CS-3C, into rice to analyze its effect on pollen fertility. Overexpression of L006278 led to a reduction in rice pollen fertility. Overall, our findings indicate that lncRNAs can contribute to the regulation of pollen fertility during the process of Gc action by regulating the expression levels of target mRNAs and acting as eTMs for certain key miRNAs.
Collapse
Affiliation(s)
- Wenrui Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
| | - Dan Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
| | - Zhonghuan Yin
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
| | - Lu Tang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
| | - Xiaoyang Pan
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
| |
Collapse
|
3
|
Xu M, Hu J, Li H, Li K, Xu D. Research overview on the genetic mechanism underlying the biosynthesis of polysaccharide in tuber plants. PeerJ 2024; 12:e17052. [PMID: 38464751 PMCID: PMC10924778 DOI: 10.7717/peerj.17052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Tuber plants are of great significance in the world as human food crops. Polysaccharides, important metabolites in tuber plants, also serve as a source of innovative drugs with significant pharmacological effects. These drugs are particularly known for their immunomodulation and antitumor properties. To fully exploit the potential value of tuber plant polysaccharides and establish a synthetic system for their targeted synthesis, it is crucial to dissect their metabolic processes and genetic regulatory mechanisms. In this article, we provide a comprehensive summary of the basic pathways involved in the synthesis of various types of tuber plant polysaccharides. We also outline the key research progress that has been made in this area in recent years. We classify the main types and functions of tuber plant polysaccharides and analyze the biosynthetic processes and genetic regulation mechanisms of key enzymes involved in the metabolic pathways of starch, cellulose, pectin, and fructan in tuber plants. We have identified hexokinase and glycosyltransferase as the key enzymes involved in the polysaccharide synthesis process. By elucidating the synthesis pathway of polysaccharides in tuber plants and understanding the underlying mechanism of action of key enzymes in the metabolic pathway, we can provide a theoretical framework for enhancing the yield of polysaccharides and other metabolites in plant culture cells. This will ultimately lead to increased production efficiency.
Collapse
Affiliation(s)
- Mengwei Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiao Hu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hongwei Li
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kunqian Li
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Delin Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
- Guizhou Provincial Demonstration Center of Basic Medical Experimental Teaching, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
4
|
Sun X, Tang M, Xu L, Luo X, Shang Y, Duan W, Huang Z, Jin C, Chen G. Genome-wide identification of long non-coding RNAs and their potential functions in radish response to salt stress. Front Genet 2023; 14:1232363. [PMID: 38028592 PMCID: PMC10656690 DOI: 10.3389/fgene.2023.1232363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are increasingly recognized as cis- and trans-acting regulators of protein-coding genes in plants, particularly in response to abiotic stressors. Among these stressors, high soil salinity poses a significant challenge to crop productivity. Radish (Raphanus sativus L.) is a prominent root vegetable crop that exhibits moderate susceptibility to salt stress, particularly during the seedling stage. Nevertheless, the precise regulatory mechanisms through which lncRNAs contribute to salt response in radish remain largely unexplored. In this study, we performed genome-wide identification of lncRNAs using strand-specific RNA sequencing on radish fleshy root samples subjected to varying time points of salinity treatment. A total of 7,709 novel lncRNAs were identified, with 363 of them displaying significant differential expression in response to salt application. Furthermore, through target gene prediction, 5,006 cis- and 5,983 trans-target genes were obtained for the differentially expressed lncRNAs. The predicted target genes of these salt-responsive lncRNAs exhibited strong associations with various plant defense mechanisms, including signal perception and transduction, transcription regulation, ion homeostasis, osmoregulation, reactive oxygen species scavenging, photosynthesis, phytohormone regulation, and kinase activity. Notably, this study represents the first comprehensive genome-wide analysis of salt-responsive lncRNAs in radish, to the best of our knowledge. These findings provide a basis for future functional analysis of lncRNAs implicated in the defense response of radish against high salinity, which will aid in further understanding the regulatory mechanisms underlying radish response to salt stress.
Collapse
Affiliation(s)
- Xiaochuan Sun
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Mingjia Tang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaobo Luo
- Guizhou Institute of Biotechnology, Guizhou Province Academy of Agricultural Sciences, Guiyang, China
| | - Yutong Shang
- Guizhou Institute of Biotechnology, Guizhou Province Academy of Agricultural Sciences, Guiyang, China
| | - Weike Duan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Zhinan Huang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Cong Jin
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Guodong Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| |
Collapse
|