1
|
Knopf O, Castro A, Bendig J, Pude R, Kleist E, Poorter H, Rascher U, Muller O. Field phenotyping of ten wheat cultivars under elevated CO 2 shows seasonal differences in chlorophyll fluorescence, plant height and vegetation indices. FRONTIERS IN PLANT SCIENCE 2024; 14:1304751. [PMID: 38259917 PMCID: PMC10800489 DOI: 10.3389/fpls.2023.1304751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024]
Abstract
In the context of climate change and global sustainable development goals, future wheat cultivation has to master various challenges at a time, including the rising atmospheric carbon dioxide concentration ([CO2]). To investigate growth and photosynthesis dynamics under the effects of ambient (~434 ppm) and elevated [CO2] (~622 ppm), a Free-Air CO2 Enrichment (FACE) facility was combined with an automated phenotyping platform and an array of sensors. Ten modern winter wheat cultivars (Triticum aestivum L.) were monitored over a vegetation period using a Light-induced Fluorescence Transient (LIFT) sensor, ground-based RGB cameras and a UAV equipped with an RGB and multispectral camera. The LIFT sensor enabled a fast quantification of the photosynthetic performance by measuring the operating efficiency of Photosystem II (Fq'/Fm') and the kinetics of electron transport, i.e. the reoxidation rates Fr1' and Fr2'. Our results suggest that elevated [CO2] significantly increased Fq'/Fm' and plant height during the vegetative growth phase. As the plants transitioned to the senescence phase, a pronounced decline in Fq'/Fm' was observed under elevated [CO2]. This was also reflected in the reoxidation rates Fr1' and Fr2'. A large majority of the cultivars showed a decrease in the harvest index, suggesting a different resource allocation and indicating a potential plateau in yield progression under e[CO2]. Our results indicate that the rise in atmospheric [CO2] has significant effects on the cultivation of winter wheat with strong manifestation during early and late growth.
Collapse
Affiliation(s)
- Oliver Knopf
- Institute of Bio- and Geosciences: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Antony Castro
- Institute of Bio- and Geosciences: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Juliane Bendig
- Institute of Bio- and Geosciences: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ralf Pude
- INRES-Renewable Resources, University of Bonn, Rheinbach, Germany
| | - Einhard Kleist
- Institute of Bio- and Geosciences: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Hendrik Poorter
- Institute of Bio- and Geosciences: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Uwe Rascher
- Institute of Bio- and Geosciences: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Onno Muller
- Institute of Bio- and Geosciences: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
2
|
de Souza Rodrigues J, Shilling D, Tishchenko V, Bowen S, Deng S, Hall DB, Grey TL. Early growth, development and allometry of glyphosate-resistant and susceptible Amaranthus palmeri in response to current and elevated temperature and CO 2. Sci Rep 2023; 13:14427. [PMID: 37660074 PMCID: PMC10475059 DOI: 10.1038/s41598-023-41121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023] Open
Abstract
This study aimed to evaluate the influence of CO2 and temperature on glyphosate-resistant and susceptible biotypes of Amaranthus palmeri (Palmer amaranth) in terms of morphological development. Height (cm), stem diameter (cm), leaf area (cm2), number of leaves, leaf, stem, and root dry matter, plant volume (m3), as well as shoot-to-root allometry were evaluated. The Palmer amaranth biotypes were grown under four different scenarios: 1-low temperature (23/33 °C) and CO2 (410 ± 25 ppm); 2-low temperature (23/33 °C) and high CO2 (750 ± 25 ppm); 3-high temperature (26/36 °C) and low CO2 (410 ± 25 ppm); and 4-high temperature (26/36 °C) and CO2 (750 ± 25 ppm). Between CO2 and temperature, the majority of differences observed were driven by CO2 levels. Palmer amaranth grown under 750 ppm of CO2 was 15.5% taller, displayed 10% more leaf area (cm2), 18% more stem dry matter, and had a 28.4% increase in volume (m3) compared to 410 ppm of CO2. GA2017 and GA2020 were 18% and 15.5% shorter, respectively. The number of leaves was 27% greater for GA2005. Plant volume decreased in GA2017 (35.6%) and GA2020 (23.8%). The shoot-to-root ratio was isomeric, except at 14 and 21 DAT, where an allometric growth towards shoot development was significant. Palmer amaranth biotypes responded differently to elevated CO2, and the impacts of temperature need further investigation on weed physiology. Thus, environmental and genetic background may affect the response of glyphosate-resistant and susceptible populations to climate change scenarios.
Collapse
Affiliation(s)
- Juliana de Souza Rodrigues
- Department of Crop and Soil Sciences, University of Georgia, 2360 Rainwater Road, Tifton, GA, 31793, USA.
| | - Donn Shilling
- Department of Crop and Soil Sciences, University of Georgia, 120 Carlton Street, Athens, GA, 30602, USA
| | - Viktor Tishchenko
- Department of Crop and Soil Sciences, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA
| | - Samantha Bowen
- Department of Crop and Soil Sciences, University of Georgia, 2360 Rainwater Road, Tifton, GA, 31793, USA
| | - Shiyuan Deng
- Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA, 30602, USA
| | - Daniel B Hall
- Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA, 30602, USA
| | - Timothy L Grey
- Department of Crop and Soil Sciences, University of Georgia, 2360 Rainwater Road, Tifton, GA, 31793, USA
| |
Collapse
|