1
|
Chotewutmontri P, Barkan A. Localization of proteins involved in the biogenesis and repair of the photosynthetic apparatus to thylakoid subdomains in Arabidopsis. PLANT DIRECT 2024; 8:e70008. [PMID: 39544483 PMCID: PMC11560805 DOI: 10.1002/pld3.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 11/17/2024]
Abstract
Thylakoid membranes in chloroplasts and cyanobacteria harbor the multisubunit protein complexes that catalyze the light reactions of photosynthesis. In plant chloroplasts, the thylakoid membrane system comprises a highly organized network with several subcompartments that differ in composition and morphology: grana stacks, unstacked stromal lamellae, and grana margins at the interface between stacked and unstacked regions. The localization of components of the photosynthetic apparatus among these subcompartments has been well characterized. However, less is known about the localization of proteins involved in the biogenesis and repair of the photosynthetic apparatus, the partitioning of proteins between two recently resolved components of the traditional margin fraction (refined margins and curvature), and the effects of light on these features. In this study, we analyzed the partitioning of numerous thylakoid biogenesis and repair factors among grana, curvature, refined margin, and stromal lamellae fractions of Arabidopsis thylakoid membranes, comparing the results from illuminated and dark-adapted plants. Several proteins previously shown to localize to a margin fraction partitioned in varying ways among the resolved curvature and refined margin fractions. For example, the ALB3 insertase and FtsH protease involved in photosystem II (PSII) repair were concentrated in the refined margin fraction, whereas TAT translocon subunits and proteins involved in early steps in photosystem assembly were concentrated in the curvature fraction. By contrast, two photosystem assembly factors that facilitate late assembly steps were depleted from the curvature fraction. The enrichment of the PSII subunit OE23/PsbP in the curvature fraction set it apart from other PSII subunits, supporting the previous conjecture that OE23/PsbP assists in PSII biogenesis and/or repair. The PSII assembly factor PAM68 partitioned differently among thylakoid fractions from dark-adapted plants and illuminated plants and was the only analyzed protein to convincingly do so. These results demonstrate an unanticipated spatial heterogeneity of photosystem biogenesis and repair functions in thylakoid membranes and reveal the curvature fraction to be a focal point of early photosystem biogenesis.
Collapse
Affiliation(s)
- Prakitchai Chotewutmontri
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
- Present address:
Crop Improvement and Genetics Research, Western Regional Research CenterUnited States Department of Agriculture—Agricultural Research ServiceAlbanyCaliforniaUSA
| | - Alice Barkan
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
| |
Collapse
|
2
|
Che LP, Ruan J, Xin Q, Zhang L, Gao F, Cai L, Zhang J, Chen S, Zhang H, Rochaix JD, Peng L. RESISTANCE TO PHYTOPHTHORA1 promotes cytochrome b559 formation during early photosystem II biogenesis in Arabidopsis. THE PLANT CELL 2024; 36:4143-4167. [PMID: 38963884 PMCID: PMC11449094 DOI: 10.1093/plcell/koae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
As an essential intrinsic component of photosystem II (PSII) in all oxygenic photosynthetic organisms, heme-bridged heterodimer cytochrome b559 (Cyt b559) plays critical roles in the protection and assembly of PSII. However, the underlying mechanisms of Cyt b559 assembly are largely unclear. Here, we characterized the Arabidopsis (Arabidopsis thaliana) rph1 (resistance to Phytophthora1) mutant, which was previously shown to be susceptible to the oomycete pathogen Phytophthora brassicae. Loss of RPH1 leads to a drastic reduction in PSII accumulation, which can be primarily attributed to the defective formation of Cyt b559. Spectroscopic analyses showed that the heme level in PSII supercomplexes isolated from rph1 is significantly reduced, suggesting that RPH1 facilitates proper heme assembly in Cyt b559. Due to the loss of RPH1-mediated processes, a covalently bound PsbE-PsbF heterodimer is formed during the biogenesis of PSII. In addition, rph1 is highly photosensitive and accumulates elevated levels of reactive oxygen species under photoinhibitory-light conditions. RPH1 is a conserved intrinsic thylakoid protein present in green algae and terrestrial plants, but absent in Synechocystis, and it directly interacts with the subunits of Cyt b559. Thus, our data demonstrate that RPH1 represents a chloroplast acquisition specifically promoting the efficient assembly of Cyt b559, probably by mediating proper heme insertion into the apo-Cyt b559 during the initial phase of PSII biogenesis.
Collapse
Affiliation(s)
- Li-Ping Che
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Junxiang Ruan
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qiang Xin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lin Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Fudan Gao
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lujuan Cai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jianing Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shiwei Chen
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hui Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, Geneva 1211, Switzerland
| | - Lianwei Peng
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
3
|
Komenda J, Sobotka R, Nixon PJ. The biogenesis and maintenance of PSII: Recent advances and current challenges. THE PLANT CELL 2024; 36:3997-4013. [PMID: 38484127 PMCID: PMC11449106 DOI: 10.1093/plcell/koae082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/27/2024] [Indexed: 10/05/2024]
Abstract
The growth of plants, algae, and cyanobacteria relies on the catalytic activity of the oxygen-evolving PSII complex, which uses solar energy to extract electrons from water to feed into the photosynthetic electron transport chain. PSII is proving to be an excellent system to study how large multi-subunit membrane-protein complexes are assembled in the thylakoid membrane and subsequently repaired in response to photooxidative damage. Here we summarize recent developments in understanding the biogenesis of PSII, with an emphasis on recent insights obtained from biochemical and structural analysis of cyanobacterial PSII assembly/repair intermediates. We also discuss how chlorophyll synthesis is synchronized with protein synthesis and suggest a possible role for PSI in PSII assembly. Special attention is paid to unresolved and controversial issues that could be addressed in future research.
Collapse
Affiliation(s)
- Josef Komenda
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Roman Sobotka
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
4
|
Bischoff A, Ortelt J, Dünschede B, Zegarra V, Bedrunka P, Bange G, Schünemann D. The role of chloroplast SRP54 domains and its C-terminal tail region in post- and co-translational protein transport in vivo. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5734-5749. [PMID: 38989593 PMCID: PMC11427828 DOI: 10.1093/jxb/erae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
In the chloroplast, the 54 kDa subunit of the signal recognition particle (cpSRP54) is involved in the post-translational transport of the light-harvesting chlorophyll a/b-binding proteins (LHCPs) and the co-translational transport of plastid-encoded subunits of the photosynthetic complexes to the thylakoid membrane. It forms a high-affinity complex with plastid-specific cpSRP43 for post-translational transport, while a ribosome-associated pool coordinates its co-translational function. CpSRP54 constitutes a conserved multidomain protein, comprising a GTPase (NG) and a methionine-rich (M) domain linked by a flexible region. It is further characterized by a plastid-specific C-terminal tail region containing the cpSRP43-binding motif. To characterize the physiological role of the various regions of cpSRP54 in thylakoid membrane protein transport, we generated Arabidopsis cpSRP54 knockout (ffc1-2) lines producing truncated cpSRP54 variants or a GTPase point mutation variant. Phenotypic characterization of the complementation lines demonstrated that the C-terminal tail region of cpSRP54 plays an important role exclusively in post-translational LHCP transport. Furthermore, we show that the GTPase activity of cpSRP54 plays an essential role in the transport pathways for both nuclear as well as plastid-encoded proteins. In addition, our data revealed that plants expressing cpSRP54 without the C-terminal region exhibit a strongly increased accumulation of a photosystem I assembly intermediate.
Collapse
Affiliation(s)
- Annika Bischoff
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Bochum, Germany
| | - Jennifer Ortelt
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Bochum, Germany
| | - Victor Zegarra
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, Marburg, Germany
| | - Patricia Bedrunka
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, Marburg, Germany
- Max-Planck-Institute for terrestrial Microbiology, Marburg, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Jenney FE, Wang H, George SJ, Xiong J, Guo Y, Gee LB, Marizcurrena JJ, Castro-Sowinski S, Staskiewicz A, Yoda Y, Hu MY, Tamasaku K, Nagasawa N, Li L, Matsuura H, Doukov T, Cramer SP. Temperature-dependent iron motion in extremophile rubredoxins - no need for 'corresponding states'. Sci Rep 2024; 14:12197. [PMID: 38806591 PMCID: PMC11133467 DOI: 10.1038/s41598-024-62261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Extremophile organisms are known that can metabolize at temperatures down to - 25 °C (psychrophiles) and up to 122 °C (hyperthermophiles). Understanding viability under extreme conditions is relevant for human health, biotechnological applications, and our search for life elsewhere in the universe. Information about the stability and dynamics of proteins under environmental extremes is an important factor in this regard. Here we compare the dynamics of small Fe-S proteins - rubredoxins - from psychrophilic and hyperthermophilic microorganisms, using three different nuclear techniques as well as molecular dynamics calculations to quantify motion at the Fe site. The theory of 'corresponding states' posits that homologous proteins from different extremophiles have comparable flexibilities at the optimum growth temperatures of their respective organisms. Although 'corresponding states' would predict greater flexibility for rubredoxins that operate at low temperatures, we find that from 4 to 300 K, the dynamics of the Fe sites in these homologous proteins are essentially equivalent.
Collapse
Affiliation(s)
- Francis E Jenney
- Georgia Campus, Philadelphia College of Osteopathic Medicine, Suwanee, GA, 30024, USA
| | | | | | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Leland B Gee
- LCLS, SLAC National Laboratory, Stanford, CA, 94025, USA
| | | | | | - Anna Staskiewicz
- Georgia Campus, Philadelphia College of Osteopathic Medicine, Suwanee, GA, 30024, USA
| | - Yoshitaka Yoda
- Precision Spectroscopy Division, SPring-8/JASRI, Sayo, Hyogo, 679-5198, Japan
| | - Michael Y Hu
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | | | - Nobumoto Nagasawa
- Precision Spectroscopy Division, SPring-8/JASRI, Sayo, Hyogo, 679-5198, Japan
| | - Lei Li
- Synchrotron Radiation Research Center, Hyogo, 679-5165, Japan
| | | | - Tzanko Doukov
- SSRL, SLAC National Laboratory, Stanford, CA, 94025, USA
| | | |
Collapse
|
6
|
Zhang L, Ruan J, Gao F, Xin Q, Che LP, Cai L, Liu Z, Kong M, Rochaix JD, Mi H, Peng L. Thylakoid protein FPB1 synergistically cooperates with PAM68 to promote CP47 biogenesis and Photosystem II assembly. Nat Commun 2024; 15:3122. [PMID: 38600073 PMCID: PMC11006888 DOI: 10.1038/s41467-024-46863-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
In chloroplasts, insertion of proteins with multiple transmembrane domains (TMDs) into thylakoid membranes usually occurs in a co-translational manner. Here, we have characterized a thylakoid protein designated FPB1 (Facilitator of PsbB biogenesis1) which together with a previously reported factor PAM68 (Photosynthesis Affected Mutant68) is involved in assisting the biogenesis of CP47, a subunit of the Photosystem II (PSII) core. Analysis by ribosome profiling reveals increased ribosome stalling when the last TMD segment of CP47 emerges from the ribosomal tunnel in fpb1 and pam68. FPB1 interacts with PAM68 and both proteins coimmunoprecipitate with SecY/E and Alb3 as well as with some ribosomal components. Thus, our data indicate that, in coordination with the SecY/E translocon and the Alb3 integrase, FPB1 synergistically cooperates with PAM68 to facilitate the co-translational integration of the last two CP47 TMDs and the large loop between them into thylakoids and the PSII core complex.
Collapse
Affiliation(s)
- Lin Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Junxiang Ruan
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Fudan Gao
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiang Xin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Li-Ping Che
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Lujuan Cai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zekun Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Mengmeng Kong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200032, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200032, China
| | - Lianwei Peng
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
7
|
Song Y, Zhang H, Liu S, Chang Y, Zhang Y, Feng H, Zhang X, Sun M, Sha W, Li Y, Dai S. Na2CO3-responsive mechanism insight from quantitative proteomics and SlRUB gene function in Salix linearistipularis seedlings. TREE PHYSIOLOGY 2024; 44:tpae011. [PMID: 38263488 DOI: 10.1093/treephys/tpae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024]
Abstract
Mongolian willow (Salix linearistipularis) is a naturally occurring woody dioecious plant in the saline soils of north-eastern China, which has a high tolerance to alkaline salts. Although transcriptomics studies have identified a large number of salinity-responsive genes, the mechanism of salt tolerance in Mongolian willow is not clear. Here, we found that in response to Na2CO3 stress, Mongolian willow regulates osmotic homeostasis by accumulating proline and soluble sugars and scavenges reactive oxygen species (ROS) by antioxidant enzymes and non-enzymatic antioxidants. Our quantitative proteomics study identified 154 salt-sensitive proteins mainly involved in maintaining the stability of the photosynthetic system and ROS homeostasis to cope with Na2CO3 stress. Among them, Na2CO3-induced rubredoxin (RUB) was predicted to be associated with 122 proteins for the modulation of these processes. The chloroplast-localized S. linearistipularis rubredoxin (SlRUB) was highly expressed in leaves and was significantly induced under Na2CO3 stress. Phenotypic analysis of overexpression, mutation and complementation materials of RUB in Arabidopsis suggests that SlRUB is critical for the regulation of photosynthesis, ROS scavenging and other metabolisms in the seedlings of Mongolian willow to cope with Na2CO3 stress. This provides more clues to better understand the alkali-responsive mechanism and RUB functions in the woody Mongolian willow.
Collapse
Affiliation(s)
- Yingying Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, No. 100 Guilin Road, Xuhui District, Shanghai 200234, China
| | - Heng Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, No. 100 Guilin Road, Xuhui District, Shanghai 200234, China
| | - Shijia Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, No. 100 Guilin Road, Xuhui District, Shanghai 200234, China
| | - Yu Chang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Yongxue Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, No. 100 Guilin Road, Xuhui District, Shanghai 200234, China
| | - Huiting Feng
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, No. 1 Jinming Avenue, Longting District, Kaifeng 475001, China
| | - Meihong Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, No. 100 Guilin Road, Xuhui District, Shanghai 200234, China
| | - Wei Sha
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar 161006, China
| | - Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, No. 100 Guilin Road, Xuhui District, Shanghai 200234, China
| |
Collapse
|
8
|
Zheng L, Zhou P, Pan Y, Li B, Shen R, Lan P. Proteomic profile of the germinating seeds reveals enhanced seedling growth in Arabidopsis rpp1a mutant. PLANT MOLECULAR BIOLOGY 2023; 113:105-120. [PMID: 37804450 DOI: 10.1007/s11103-023-01378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
Ribosomal phosphoprotein P1 (RPP1) is an integral component of the P-protein stalk in the 60S subunit of eukaryotic ribosomes and is required for the efficient elongation of translation. Previously, Arabidopsis RPP1A was revealed to be involved in the regulation of seed size and seed storage protein accumulation. In this work, the seedling growth analysis shows that the knockout mutation of Arabidopsis RPP1A significantly promoted seedling growth, particularly in the shoots. The label-free quantitative proteomic analysis demonstrated that a total of 593 proteins were differentially accumulated between the germinating seeds of the wild-type Col-0 and rpp1a mutant. And these proteins were significantly enriched in the intracellular transport, nitrogen compound transport, protein transport, and organophosphate metabolic process. The abundance of proteins involved in the RNA and protein processing processes, including ncRNA processing and protein folding, were significantly increased in the rpp1a mutant. Mutation in RPP1A highlighted the effects on the ribosome, energy metabolism, and nitrogen metabolism. The abundance of enzymes involved in glycolysis and pyruvate mechanism was decreased in the germinating seeds of the rpp1a mutant. Whereas the processes of amino acid biosynthesis, protein processing in endoplasmic reticulum, and biosynthesis of cofactors were enhanced in the germinating seeds of the rpp1a mutant. Taken together, the lack of RPP1A triggered changes in other ribosomal proteins, and the higher amino acid contents in the seedlings of the rpp1a mutant probably contributed to enhanced biosynthesis, processing, and transport of proteins, resulting in accelerated growth. Our results show the novel role of a P-protein and shed new light on the regulatory mechanism of seedling growth.
Collapse
Affiliation(s)
- Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Peijun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yilin Pan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingjuan Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Wang F, Dischinger K, Westrich LD, Meindl I, Egidi F, Trösch R, Sommer F, Johnson X, Schroda M, Nickelsen J, Willmund F, Vallon O, Bohne AV. One-helix protein 2 is not required for the synthesis of photosystem II subunit D1 in Chlamydomonas. PLANT PHYSIOLOGY 2023; 191:1612-1633. [PMID: 36649171 PMCID: PMC10022639 DOI: 10.1093/plphys/kiad015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In land plants and cyanobacteria, co-translational association of chlorophyll (Chl) to the nascent D1 polypeptide, a reaction center protein of photosystem II (PSII), requires a Chl binding complex consisting of a short-chain dehydrogenase (high chlorophyll fluorescence 244 [HCF244]/uncharacterized protein 39 [Ycf39]) and one-helix proteins (OHP1 and OHP2 in chloroplasts) of the light-harvesting antenna complex superfamily. Here, we show that an ohp2 mutant of the green alga Chlamydomonas (Chlamydomonas reinhardtii) fails to accumulate core PSII subunits, in particular D1 (encoded by the psbA mRNA). Extragenic suppressors arose at high frequency, suggesting the existence of another route for Chl association to PSII. The ohp2 mutant was complemented by the Arabidopsis (Arabidopsis thaliana) ortholog. In contrast to land plants, where psbA translation is prevented in the absence of OHP2, ribosome profiling experiments showed that the Chlamydomonas mutant translates the psbA transcript over its full length. Pulse labeling suggested that D1 is degraded during or immediately after translation. The translation of other PSII subunits was affected by assembly-controlled translational regulation. Proteomics showed that HCF244, a translation factor which associates with and is stabilized by OHP2 in land plants, still partly accumulates in the Chlamydomonas ohp2 mutant, explaining the persistence of psbA translation. Several Chl biosynthesis enzymes overaccumulate in the mutant membranes. Partial inactivation of a D1-degrading protease restored a low level of PSII activity in an ohp2 background, but not photoautotrophy. Taken together, our data suggest that OHP2 is not required for psbA translation in Chlamydomonas, but is necessary for D1 stabilization.
Collapse
Affiliation(s)
- Fei Wang
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | | | - Lisa Désirée Westrich
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Irene Meindl
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Felix Egidi
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Raphael Trösch
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Xenie Johnson
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Joerg Nickelsen
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Olivier Vallon
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
| | | |
Collapse
|
10
|
Calderon RH, de Vitry C, Wollman FA, Niyogi KK. Rubredoxin 1 promotes the proper folding of D1 and is not required for heme b 559 assembly in Chlamydomonas photosystem II. J Biol Chem 2023; 299:102968. [PMID: 36736898 PMCID: PMC9986647 DOI: 10.1016/j.jbc.2023.102968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Photosystem II (PSII), the water:plastoquinone oxidoreductase of oxygenic photosynthesis, contains a heme b559 iron whose axial ligands are provided by histidine residues from the α (PsbE) and β (PsbF) subunits. PSII assembly depends on accessory proteins that facilitate the step-wise association of its protein and pigment components into a functional complex, a process that is challenging to study due to the low accumulation of assembly intermediates. Here, we examined the putative role of the iron[1Fe-0S]-containing protein rubredoxin 1 (RBD1) as an assembly factor for cytochrome b559, using the RBD1-lacking 2pac mutant from Chlamydomonas reinhardtii, in which the accumulation of PSII was rescued by the inactivation of the thylakoid membrane FtsH protease. To this end, we constructed the double mutant 2pac ftsh1-1, which harbored PSII dimers that sustained its photoautotrophic growth. We purified PSII from the 2pac ftsh1-1 background and found that α and β cytochrome b559 subunits are still present and coordinate heme b559 as in the WT. Interestingly, immunoblot analysis of dark- and low light-grown 2pac ftsh1-1 showed the accumulation of a 23-kDa fragment of the D1 protein, a marker typically associated with structural changes resulting from photodamage of PSII. Its cleavage occurs in the vicinity of a nonheme iron which binds to PSII on its electron acceptor side. Altogether, our findings demonstrate that RBD1 is not required for heme b559 assembly and point to a role for RBD1 in promoting the proper folding of D1, possibly via delivery or reduction of the nonheme iron during PSII assembly.
Collapse
Affiliation(s)
- Robert H Calderon
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - Francis-André Wollman
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| |
Collapse
|
11
|
Chiu YF, Chu HA. New Structural and Mechanistic Insights Into Functional Roles of Cytochrome b 559 in Photosystem II. FRONTIERS IN PLANT SCIENCE 2022; 13:914922. [PMID: 35755639 PMCID: PMC9214863 DOI: 10.3389/fpls.2022.914922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Cytochrome (Cyt) b 559 is a key component of the photosystem II (PSII) complex for its assembly and proper function. Previous studies have suggested that Cytb 559 has functional roles in early assembly of PSII and in secondary electron transfer pathways that protect PSII against photoinhibition. In addition, the Cytb 559 in various PSII preparations exhibited multiple different redox potential forms. However, the precise functional roles of Cytb 559 in PSII remain unclear. Recent site-directed mutagenesis studies combined with functional genomics and biochemical analysis, as well as high-resolution x-ray crystallography and cryo-electron microscopy studies on native, inactive, and assembly intermediates of PSII have provided important new structural and mechanistic insights into the functional roles of Cytb 559. This mini-review gives an overview of new exciting results and their significance for understanding the structural and functional roles of Cytb 559 in PSII.
Collapse
|