1
|
Xing Y, Feng ZQ, Zhang X, Cao HX, Liu CL, Qin HH, Jiang H, Zhu ZL, Ge SF, Jiang YM. Nitrogen reduces calcium availability by promoting oxalate biosynthesis in apple leaves. HORTICULTURE RESEARCH 2024; 11:uhae208. [PMID: 39372287 PMCID: PMC11450213 DOI: 10.1093/hr/uhae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/18/2024] [Indexed: 10/08/2024]
Abstract
N and Ca are essential nutrients for apple growth and development. Studies have found that Ca content was not low under high N conditions but was poorly available. However, the underlying physiological mechanism through which N regulates Ca availability remains unclear. In this study, apple plants were supplied with N and Ca to analyse the content, in situ distribution, and forms of Ca using noninvasive micro-test technique, electron probe microanalysis, Fourier transform infrared spectroscopy, and transcriptome analysis. A potential interaction was observed between N and Ca in apple leaves. The application of high N and Ca concentration led to a CaOx content of 12.51 g/kg, representing 93.54% of the total Ca in the apple leaves. Electron probe microanalysis revealed that Ca deposited in the phloem primarily existed as CaOx rhombus-shaped crystals. Additionally, high N positively regulated oxalate accumulation in the leaves, increasing it by 40.79 times compared with low N concentration. Specifically, N induced oxalate synthesis in apple leaves by upregulating the MdICL, MdOXAC, and MdMDH genes, while simultaneously inhibiting degradation through downregulation of the MdAAE3 gene. Transcriptome and correlation analyses further confirmed oxaloacetate as the precursor for the synthesis of CaOx crystals in the apple leaves, which were produced via the 'photosynthesis/glycolysis -oxaloacetate -oxalate -CaOx' pathway. WGCNA identified potential regulators of the CaOx biosynthesis pathway triggered by N. Overall, the results provide insights into the regulation of Ca availability by N in apple leaves and support the development of Ca efficient cultivation technique.
Collapse
Affiliation(s)
- Yue Xing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Zi-Quan Feng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Xin Zhang
- 421 laboratory, Xinlianxin Chemical Group Co., Ltd, Henan, China
| | - Hong-Xing Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Chun-Ling Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Han-Han Qin
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Han Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Zhan-Ling Zhu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Shun-Feng Ge
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Yuan-Mao Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| |
Collapse
|
2
|
Han GH, Huang RN, Hong LH, Xu JX, Hong YG, Wu YH, Chen WW. The transcription factor NAC102 confers cadmium tolerance by regulating WAKL11 expression and cell wall pectin metabolism in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2262-2278. [PMID: 37565550 DOI: 10.1111/jipb.13557] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023]
Abstract
Cadmium (Cd) toxicity severely limits plant growth and development. Moreover, Cd accumulation in vegetables, fruits, and food crops poses health risks to animals and humans. Although the root cell wall has been implicated in Cd stress in plants, whether Cd binding by cell wall polysaccharides contributes to tolerance remains controversial, and the mechanism underlying transcriptional regulation of cell wall polysaccharide biosynthesis in response to Cd stress is unknown. Here, we functionally characterized an Arabidopsis thaliana NAC-type transcription factor, NAC102, revealing its role in Cd stress responses. Cd stress rapidly induced accumulation of NAC102.1, the major transcript encoding functional NAC102, especially in the root apex. Compared to wild type (WT) plants, a nac102 mutant exhibited enhanced Cd sensitivity, whereas NAC102.1-overexpressing plants displayed the opposite phenotype. Furthermore, NAC102 localizes to the nucleus, binds directly to the promoter of WALL-ASSOCIATED KINASE-LIKE PROTEIN11 (WAKL11), and induces transcription, thereby facilitating pectin degradation and decreasing Cd binding by pectin. Moreover, WAKL11 overexpression restored Cd tolerance in nac102 mutants to the WT levels, which was correlated with a lower pectin content and lower levels of pectin-bound Cd. Taken together, our work shows that the NAC102-WAKL11 module regulates cell wall pectin metabolism and Cd binding, thus conferring Cd tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Guang Hao Han
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ru Nan Huang
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Li Hong Hong
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jia Xi Xu
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yi Guo Hong
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Warwick-Hangzhou RNA Signaling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick, CV4 7AL, United Kingdom
| | - Yu Huan Wu
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wei Wei Chen
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
He Q, Jin J, Li P, Zhu H, Wang Z, Fan W, Yang JL. Involvement of SlSTOP1 regulated SlFDH expression in aluminum tolerance by reducing NAD + to NADH in the tomato root apex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:387-401. [PMID: 36471650 DOI: 10.1111/tpj.16054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Formate dehydrogenase (FDH; EC 1.2.1.2.) has been implicated in plant responses to a variety of stresses, including aluminum (Al) stress in acidic soils. However, the role of this enzyme in Al tolerance is not yet fully understood, and how FDH gene expression is regulated is unknown. Here, we report the identification and functional characterization of the tomato (Solanum lycopersicum) SlFDH gene. SlFDH encodes a mitochondria-localized FDH with Km values of 2.087 mm formate and 29.1 μm NAD+ . Al induced the expression of SlFDH in tomato root tips, but other metals did not, as determined by quantitative reverse transcriptase-polymerase chain reaction. CRISPR/Cas9-generated SlFDH knockout lines were more sensitive to Al stress and formate than wild-type plants. Formate failed to induce SlFDH expression in the tomato root apex, but NAD+ accumulated in response to Al stress. Co-expression network analysis and interaction analysis between genomic DNA and transcription factors (TFs) using PlantRegMap identified seven TFs that might regulate SlFDH expression. One of these TFs, SlSTOP1, positively regulated SlFDH expression by directly binding to its promoter, as demonstrated by a dual-luciferase reporter assay and electrophoretic mobility shift assay. The Al-induced expression of SlFDH was completely abolished in Slstop1 mutants, indicating that SlSTOP1 is a core regulator of SlFDH expression under Al stress. Taken together, our findings demonstrate that SlFDH plays a role in Al tolerance and reveal the transcriptional regulatory mechanism of SlFDH expression in response to Al stress in tomato.
Collapse
Affiliation(s)
- Qiyu He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianfeng Jin
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Pengfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huihui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Wei Fan
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Li P, Liu C, Luo Y, Shi H, Li Q, PinChu C, Li X, Yang J, Fan W. Oxalate in Plants: Metabolism, Function, Regulation, and Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16037-16049. [PMID: 36511327 DOI: 10.1021/acs.jafc.2c04787] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Characterized by strong acidity, chelating ability, and reducing ability, oxalic acid, a low molecular weight dicarboxylic organic acid, plays important roles in the regulation of plant growth and development, the response to both biotic and abiotic stresses such as plant defense and heavy metals detoxification, and food quality. The metabolism of oxalic acid has been well-studied in microorganisms, fungi, and animals but remains less understood in plants. However, excessive accumulation of oxalic acid is detrimental to plants. Therefore, the level of oxalic acid has to be precisely controlled in plant tissues. In this review, we summarize the metabolism, function, and regulation of oxalic acid in plants, and we discuss solutions such as agricultural practices and plant biotechnology to manipulate oxalic acid metabolism to regulate plant responses to both external stimuli and internal developmental cues.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlan Liu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Yu Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huineng Shi
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Qi Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Cier PinChu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuejiao Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Jianli Yang
- State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Fan
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
5
|
Mining Candidate Genes Related to Heavy Metals in Mature Melon ( Cucumis melo L.) Peel and Pulp Using WGCNA. Genes (Basel) 2022; 13:genes13101767. [PMID: 36292652 PMCID: PMC9602089 DOI: 10.3390/genes13101767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022] Open
Abstract
The content of metal ions in fruits is inseparable from plant intake of trace elements and health effects in the human body. To understand metal ion content in the fruit and pericarp of melon (Cucumis melo L.) and the candidate genes responsible for controlling this process, we analyzed the metal ion content in distinct parts of melon fruit and pericarp and performed RNA-seq. The results showed that the content of metal ions in melon fruit tissue was significantly higher than that in the pericarp. Based on transcriptome expression profiling, we found that the fruit and pericarp contained elevated levels of DEGs. GO functional annotations included cell surface receptor signaling, signal transduction, organic substance metabolism, carbohydrate derivative binding, and hormone-mediated signaling pathways. KEGG pathways included pectate lyase, pentose and glucuronate interconversions, H+-transporting ATPase, oxidative phosphorylation, plant hormone signal transduction, and MAPK signaling pathways. We also analyzed the expression patterns of genes and transcription factors involved in hormone biosynthesis and signal transduction. Using weighted gene co-expression network analysis (WGCNA), a co-expression network was constructed to identify a specific module that was significantly correlated with the content of metal ions in melon, after which the gene expression in the module was measured. Connectivity and qRT–PCR identified five candidate melon genes, LOC103501427, LOC103501539, LOC103503694, LOC103504124, and LOC107990281, associated with metal ion content. This study provides a theoretical basis for further understanding the molecular mechanism of heavy metal ion content in melon fruit and peel and provides new genetic resources for the study of heavy metal ion content in plant tissues.
Collapse
|
6
|
Xu YX, Lei YS, Huang SX, Zhang J, Wan ZY, Zhu XT, Jin SH. Combined de novo transcriptomic and physiological analyses reveal RyALS3-mediated aluminum tolerance in Rhododendron yunnanense Franch. FRONTIERS IN PLANT SCIENCE 2022; 13:951003. [PMID: 36035662 PMCID: PMC9399778 DOI: 10.3389/fpls.2022.951003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Rhododendron (Ericaceae) not only has ornamental value, but also has great medicinal and edible values. Many Rhododendron species are native to acid soils where aluminum (Al) toxicity limits plant productivity and species distribution. However, it remains unknown how Rhododendron adapts to acid soils. Here, we investigated the physiological and molecular mechanisms of Al tolerance in Rhododendron yunnanense Franch. We found that the shoots of R. yunnanense Franch did not accumulate Al after exposure of seedlings to 50 μM Al for 7 days but predominantly accumulated in roots, suggesting that root Al immobilization contributes to its high Al tolerance. Whole-genome de novo transcriptome analysis was carried out for R. yunnanense Franch root apex in response to 6 h of 50 μM Al stress. A total of 443,639 unigenes were identified, among which 1,354 and 3,413 were up- and down-regulated, respectively, by 6 h of 50 μM Al treatment. Both Gene Ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that genes involved in "ribosome" and "cytoskeleton" are overrepresented. Additionally, we identified Al-tolerance homologous genes including a tonoplast-localized ABC transporter RyALS3; 1. Overexpression of RyALS3; 1 in tobacco plants confers transgenic plants higher Al tolerance. However, root Al content was not different between wild-type plants and transgenic plants, suggesting that RyALS3; 1 is responsible for Al compartmentalization within vacuoles. Taken together, integrative transcriptome, physiological, and molecular analyses revealed that high Al tolerance in R. yunnanense Franch is associated with ALS3; 1-mediated Al immobilization in roots.
Collapse
Affiliation(s)
- Yan-Xia Xu
- Jiyang College, Zhejiang A&F University, Zhuji, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin’an, China
| | - Yun-Sheng Lei
- Jiyang College, Zhejiang A&F University, Zhuji, China
| | | | - Jing Zhang
- Jiyang College, Zhejiang A&F University, Zhuji, China
| | - Zi-Yun Wan
- Jiyang College, Zhejiang A&F University, Zhuji, China
| | - Xiang-Tao Zhu
- Jiyang College, Zhejiang A&F University, Zhuji, China
| | - Song-Heng Jin
- Jiyang College, Zhejiang A&F University, Zhuji, China
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, China
| |
Collapse
|