1
|
Lohani N, Singh MB, Bhalla PL. Deciphering the Vulnerability of Pollen to Heat Stress for Securing Crop Yields in a Warming Climate. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39722468 DOI: 10.1111/pce.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Climate change is leading to more frequent and severe extreme temperature events, negatively impacting agricultural productivity and threatening global food security. Plant reproduction, the process fundamental to crop yield, is highly susceptible to heatwaves, which disrupt pollen development and ultimately affect seed-set and crop yields. Recent research has increasingly focused on understanding how pollen grains from various crops react to heat stress at the molecular and cellular levels. This surge in interest over the last decade has been driven by advances in genomic technologies, such as single-cell RNA sequencing, which holds significant potential for revealing the underlying regulatory reprogramming triggered by heat stress throughout the various stages of pollen development. This review focuses on how heat stress affects gene regulatory networks, including the heat stress response, the unfolded protein response, and autophagy, and discusses the impact of these changes on various stages of pollen development. It highlights the potential of pollen selection as a key strategy for improving heat tolerance in crops by leveraging the genetic variability among pollen grains. Additionally, genome-wide association studies and population screenings have shed light on the genetic underpinnings of traits in major crops that respond to high temperatures during male reproductive stages. Gene-editing tools like CRISPR/Cas systems could facilitate precise genetic modifications to boost pollen heat resilience. The information covered in this review is valuable for selecting traits and employing molecular genetic approaches to develop heat-tolerant genotypes.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Brandoli C, Mortada A, Todeschini C, Siniscalco C, Sgarbi E. The role of sucrose in maintaining pollen viability and germinability in Corylus avellana L.: a possible strategy to cope with climate variability. PROTOPLASMA 2024:10.1007/s00709-024-02015-z. [PMID: 39663238 DOI: 10.1007/s00709-024-02015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
In this work, we propose a possible correlation between carbohydrate content in hazelnut pollen (wild type) and viability/germinability, also in a perspective of adaptation to climate variability. Samples from four different cultivation fields in Italy showed values of pollen viability characterized by high levels, ranging between 77.3 and 98.4% and a unique trend during the flowering period for each accession. When subjected to dehydration in controlled environment, pollen reduced the levels of viability to almost zero but recovered the initial values when rehydrated. The presence of anomalous pollen was found to be not significant, always below 4% in all accessions. The analysis on starch content gave negative results both when it was determined biochemically and detected by histological staining. Sucrose content resulted always higher than glucose and fructose in all the accessions analyzed. Its concentration throughout the dispersal phases reflected the trend of both pollen viability and germinability. These data seem to suggest a direct involvement of sucrose in the protection of plasma membranes from dehydration and the maintenance of pollen viability and germinability. This study demonstrates the sensitivity of hazelnut pollen to climatic fluctuations, particularly to air dry condition, stressing a significant role of sucrose in maintaing viablity and germinabilty during all dispersal period.
Collapse
Affiliation(s)
- C Brandoli
- BIOGEST-SITEIA, Università Di Modena e Reggio Emilia, Via Amendola 2, 42124, Reggio Emilia, Italy.
| | - A Mortada
- Department of Chemical and Geological Sciences, Università Di Modena e Reggio Emilia, Via Amendola, 2, 42122, Reggio Emilia, Italy
| | - C Todeschini
- Ferrero Hazelnut Company, 16 Route de Trèves, L-2633, Senningerberg, Luxembourg
| | - C Siniscalco
- Department of Life Science and Systems Biology, Università Di Torino, Viale Mattioli, 25, 10125, Turin, Italy
| | - E Sgarbi
- BIOGEST-SITEIA, Università Di Modena e Reggio Emilia, Via Amendola 2, 42124, Reggio Emilia, Italy
- Department of Life Sciences, Università Di Modena e Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| |
Collapse
|
3
|
Wang N, Zhu Y, Zhou Y, Gao F, Cui S. Transcriptome Analysis Reveals the Crucial Role of Phenylalanine Ammonia-Lyase in Low Temperature Response in Ammopiptanthus mongolicus. Genes (Basel) 2024; 15:1465. [PMID: 39596665 PMCID: PMC11593641 DOI: 10.3390/genes15111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Ammopiptanthus mongolicus is a rare temperate evergreen shrub with high tolerance to low temperature, and understanding the related gene expression regulatory network can help advance research on the mechanisms of plant tolerance to abiotic stress. Methods: Here, time-course transcriptome analysis was applied to investigate the gene expression network in A. mongolicus under low temperature stress. Results: A total of 12,606 differentially expressed genes (DEGs) were identified at four time-points during low temperature stress treatment, and multiple pathways, such as plant hormones, secondary metabolism, and cell membranes, were significantly enriched in the DEGs. Trend analysis found that the expression level of genes in cluster 19 continued to upregulate under low temperatures, and the genes in cluster 19 were significantly enriched in plant hormone signaling and secondary metabolic pathways. Based on the transcriptome data, the expression profiles of the genes in abscisic acid, salicylic acid, and flavonoid metabolic pathways were analyzed. It was found that biosynthesis of abscisic acid and flavonoids may play crucial roles in the response to low temperature stress. Furthermore, members of the phenylalanine ammonia-lyase (PAL) family in A. mongolicus were systematically identified and their structures and evolution were characterized. Analysis of cis-acting elements showed that the PAL genes in A. mongolicus were closely related to abiotic stress response. Expression pattern analysis showed that PAL genes responded to various environmental stresses, such as low temperature, supporting their involvement in the low temperature response in A. mongolicus. Conclusions: Our study provides important data for understanding the mechanisms of tolerance to low temperatures in A. mongolicus.
Collapse
Affiliation(s)
- Ning Wang
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China;
| | - Yilin Zhu
- College of Life and Environmental Sciences, Minzu University of China, Haidian District, Beijing 100081, China; (Y.Z.); (Y.Z.)
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Haidian District, Beijing 100081, China; (Y.Z.); (Y.Z.)
| | - Fei Gao
- College of Life and Environmental Sciences, Minzu University of China, Haidian District, Beijing 100081, China; (Y.Z.); (Y.Z.)
| | - Suxia Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China;
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing 100048, China
| |
Collapse
|
4
|
Baranov D, Dolgov S, Timerbaev V. New Advances in the Study of Regulation of Tomato Flowering-Related Genes Using Biotechnological Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:359. [PMID: 38337892 PMCID: PMC10856997 DOI: 10.3390/plants13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The tomato is a convenient object for studying reproductive processes, which has become a classic. Such complex processes as flowering and fruit setting require an understanding of the fundamental principles of molecular interaction, the structures of genes and proteins, the construction of signaling pathways for transcription regulation, including the synchronous actions of cis-regulatory elements (promoter and enhancer), trans-regulatory elements (transcription factors and regulatory RNAs), and transposable elements and epigenetic regulators (DNA methylation and acetylation, chromatin structure). Here, we discuss the current state of research on tomatoes (2017-2023) devoted to studying the function of genes that regulate flowering and signal regulation systems using genome-editing technologies, RNA interference gene silencing, and gene overexpression, including heterologous expression. Although the central candidate genes for these regulatory components have been identified, a complete picture of their relationship has yet to be formed. Therefore, this review summarizes the latest achievements related to studying the processes of flowering and fruit set. This work attempts to display the gene interaction scheme to better understand the events under consideration.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Dolgov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
5
|
Bollier N, Micol-Ponce R, Dakdaki A, Maza E, Zouine M, Djari A, Bouzayen M, Chevalier C, Delmas F, Gonzalez N, Hernould M. Various tomato cultivars display contrasting morphological and molecular responses to a chronic heat stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1278608. [PMID: 37965003 PMCID: PMC10642206 DOI: 10.3389/fpls.2023.1278608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023]
Abstract
Climate change is one of the biggest threats that human society currently needs to face. Heat waves associated with global warming negatively affect plant growth and development and will increase in intensity and frequency in the coming years. Tomato is one of the most produced and consumed fruit in the world but remarkable yield losses occur every year due to the sensitivity of many cultivars to heat stress (HS). New insights into how tomato plants are responding to HS will contribute to the development of cultivars with high yields under harsh temperature conditions. In this study, the analysis of microsporogenesis and pollen germination rate of eleven tomato cultivars after exposure to a chronic HS revealed differences between genotypes. Pollen development was either delayed and/or desynchronized by HS depending on the cultivar considered. In addition, except for two, pollen germination was abolished by HS in all cultivars. The transcriptome of floral buds at two developmental stages (tetrad and pollen floral buds) of five cultivars revealed common and specific molecular responses implemented by tomato cultivars to cope with chronic HS. These data provide valuable insights into the diversity of the genetic response of floral buds from different cultivars to HS and may contribute to the development of future climate resilient tomato varieties.
Collapse
Affiliation(s)
- N. Bollier
- INRAE, Université de Bordeaux, BFP, Bordeaux, France
| | | | - A. Dakdaki
- INRAE, Université de Bordeaux, BFP, Bordeaux, France
| | - E. Maza
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
| | - M. Zouine
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
| | - A. Djari
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
| | - M. Bouzayen
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
| | - C. Chevalier
- INRAE, Université de Bordeaux, BFP, Bordeaux, France
| | - F. Delmas
- INRAE, Université de Bordeaux, BFP, Bordeaux, France
| | - N. Gonzalez
- INRAE, Université de Bordeaux, BFP, Bordeaux, France
| | - M. Hernould
- INRAE, Université de Bordeaux, BFP, Bordeaux, France
| |
Collapse
|
6
|
Li H, Ma C, Li S, Wang H, Fang L, Feng J, Wang Y, Li Z, Cai Q, Geng X, Liu Z. Eight Typical Aroma Compounds of 'Panguxiang' Pear during Development and Storage Identified via Metabolomic Profiling. Life (Basel) 2023; 13:1504. [PMID: 37511880 PMCID: PMC10381515 DOI: 10.3390/life13071504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Aroma is an appreciated fruit property, and volatile flavor plays a key role in determining the perception and acceptability of fruit products by consumers. However, metabolite composition that contributes to the aroma in fruit quality is unclear. In this study, we detected 645 volatile organic compounds of 'Panguxiang' pear in total, including esters, alcohols, alkanes, acids, ketones, terpenes and aldehydes. In addition, the levels of sugars, organic acids and amino acids in 'Panguxiang' pear were investigated using high-performance liquid chromatography. In the aroma generation, glucose was the dominant sugar, followed by sucrose and fructose. At the development transferred storage stage, organic acids may not participate in aroma biosynthesis. The amino acids that may play potential roles in aroma substance synthesis are tyrosine and glycine. Through metabolomics analysis at different stages of 'Panguxiang' pear, we selected 65 key metabolites that were significantly related to glucose, sucrose, fructose, tyrosine and glycine, according to the trends of metabolite concentrations. Finally, we chose eight candidate metabolites (e.g., three esters, two aldehydes, one alcohol, one acid and one ketone) as the representative aroma substances of the 'Panguxiang' pear compared to the metabolome of the 'Korla' at stage Z5. Data and results from this study can help better understand the variations in aroma quality among pear varieties and assist in developing breeding programs for pear varieties.
Collapse
Affiliation(s)
- Huiyun Li
- College of Forest, Henan Agricultural University, Zhengzhou 450002, China
| | - Chaowang Ma
- Zhengzhou Zheng Shi Chemical Co., Ltd., Zhengzhou 450002, China
| | - Shunfu Li
- College of Forest, Henan Agricultural University, Zhengzhou 450002, China
| | - Huimin Wang
- College of Forest, Henan Agricultural University, Zhengzhou 450002, China
| | - Lisha Fang
- College of Forest, Henan Agricultural University, Zhengzhou 450002, China
| | - Jian Feng
- College of Forest, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanmei Wang
- College of Forest, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhi Li
- College of Forest, Henan Agricultural University, Zhengzhou 450002, China
| | - Qifei Cai
- College of Forest, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaodong Geng
- College of Forest, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhen Liu
- College of Forest, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
7
|
Khan AH, Min L, Ma Y, Zeeshan M, Jin S, Zhang X. High-temperature stress in crops: male sterility, yield loss and potential remedy approaches. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:680-697. [PMID: 36221230 PMCID: PMC10037161 DOI: 10.1111/pbi.13946] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 05/16/2023]
Abstract
Global food security is one of the utmost essential challenges in the 21st century in providing enough food for the growing population while coping with the already stressed environment. High temperature (HT) is one of the main factors affecting plant growth, development and reproduction and causes male sterility in plants. In male reproductive tissues, metabolic changes induced by HT involve carbohydrates, lipids, hormones, epigenetics and reactive oxygen species, leading to male sterility and ultimately reducing yield. Understanding the mechanism and genes involved in these pathways during the HT stress response will provide a new path to improve crops by using molecular breeding and biotechnological approaches. Moreover, this review provides insight into male sterility and integrates this with suggested strategies to enhance crop tolerance under HT stress conditions at the reproductive stage.
Collapse
Affiliation(s)
- Aamir Hamid Khan
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Muhammad Zeeshan
- Guangxi Key Laboratory for Agro‐Environment and Agro‐Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of AgricultureGuanxi UniversityNanningChina
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
8
|
Hua J, Dong X. Sustaining plant immunity in rising temperature. Cell Res 2022; 32:1038-1039. [PMID: 35931822 PMCID: PMC9715545 DOI: 10.1038/s41422-022-00710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Jian Hua
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Xinnian Dong
- Department of Biology, Duke University, Durham, NC, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
| |
Collapse
|