1
|
Kuczyńska A, Michałek M, Ogrodowicz P, Kempa M, Witaszak N, Dziurka M, Gruszka D, Daszkowska-Golec A, Szarejko I, Krajewski P, Mikołajczak K. Drought-induced molecular changes in crown of various barley phytohormone mutants. PLANT SIGNALING & BEHAVIOR 2024; 19:2371693. [PMID: 38923879 PMCID: PMC11210921 DOI: 10.1080/15592324.2024.2371693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
One of the main signal transduction pathways that modulate plant growth and stress responses, including drought, is the action of phytohormones. Recent advances in omics approaches have facilitated the exploration of plant genomes. However, the molecular mechanisms underlying the response in the crown of barley, which plays an essential role in plant performance under stress conditions and regeneration after stress treatment, remain largely unclear. The objective of the present study was the elucidation of drought-induced molecular reactions in the crowns of different barley phytohormone mutants. We verified the hypothesis that defects of gibberellins, brassinosteroids, and strigolactones action affect the transcriptomic, proteomic, and hormonal response of barley crown to the transitory drought influencing plant development under stress. Moreover, we assumed that due to the strong connection between strigolactones and branching the hvdwarf14.d mutant, with dysfunctional receptor of strigolactones, manifests the most abundant alternations in crowns and phenotype under drought. Finally, we expected to identify components underlying the core response to drought which are independent of the genetic background. Large-scale analyses were conducted using gibberellins-biosynthesis, brassinosteroids-signaling, and strigolactones-signaling mutants, as well as reference genotypes. Detailed phenotypic evaluation was also conducted. The obtained results clearly demonstrated that hormonal disorders caused by mutations in the HvGA20ox2, HvBRI1, and HvD14 genes affected the multifaceted reaction of crowns to drought, although the expression of these genes was not induced by stress. The study further detected not only genes and proteins that were involved in the drought response and reacted specifically in mutants compared to the reaction of reference genotypes and vice versa, but also the candidates that may underlie the genotype-universal stress response. Furthermore, candidate genes involved in phytohormonal interactions during the drought response were identified. We also found that the interplay between hormones, especially gibberellins and auxins, as well as strigolactones and cytokinins may be associated with the regulation of branching in crowns exposed to drought. Overall, the present study provides novel insights into the molecular drought-induced responses that occur in barley crowns.
Collapse
Affiliation(s)
- Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Martyna Michałek
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Michał Kempa
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Natalia Witaszak
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Michał Dziurka
- Faculty of Natural Sciences, The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Krakow, Poland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | | |
Collapse
|
2
|
Sigalas PP, Bennett T, Buchner P, Thomas SG, Jamois F, Arkoun M, Yvin JC, Bennett MJ, Hawkesford MJ. At the crossroads: strigolactones mediate changes in cytokinin synthesis and signalling in response to nitrogen limitation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:139-158. [PMID: 39136678 DOI: 10.1111/tpj.16976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/27/2024]
Abstract
Strigolactones (SLs) are key regulators of shoot growth and responses to environmental stimuli. Numerous studies have indicated that nitrogen (N) limitation induces SL biosynthesis, suggesting that SLs may play a pivotal role in coordinating systemic responses to N availability, but this idea has not been clearly demonstrated. Here, we generated triple knockout mutants in the SL synthesis gene TaDWARF17 (TaD17) in bread wheat and investigated their phenotypic and transcriptional responses under N limitation, aiming to elucidate the role of SLs in the adaptation to N limitation. Tad17 mutants display typical SL mutant phenotypes, and fail to adapt their shoot growth appropriately to N. Despite exhibiting an increased tillering phenotype, Tad17 mutants continued to respond to N limitation by reducing tiller number, suggesting that SLs are not the sole regulators of tillering in response to N availability. RNA-seq analysis of basal nodes revealed that the loss of D17 significantly altered the transcriptional response of N-responsive genes, including changes in the expression profiles of key N response master regulators. Crucially, our findings suggest that SLs are required for the transcriptional downregulation of cytokinin (CK) synthesis and signalling in response to N limitation. Collectively, our results suggest that SLs are essential for the appropriate morphological and transcriptional adaptation to N limitation in wheat, and that the repressive effect of SLs on shoot growth is partly mediated by their repression of CK synthesis.
Collapse
Affiliation(s)
| | - Tom Bennett
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter Buchner
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | | | - Frank Jamois
- Laboratoire de Physico-Chimie et Bioanalytique, Centre Mondial d'Innovation of Roullier Group, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Mustapha Arkoun
- Plant Nutrition R&D Department, Centre Mondial d'Innovation of Roullier Group, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Jean-Claude Yvin
- Plant Nutrition R&D Department, Centre Mondial d'Innovation of Roullier Group, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Malcolm J Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | | |
Collapse
|
3
|
Zhang W, Tao J, Chang Y, Wang D, Wu Y, Gu C, Tao W, Wang H, Xie X, Zhang Y. Cytokinin catabolism and transport are involved in strigolactone-modulated rice tiller bud elongation fueled by phosphate and nitrogen supply. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108982. [PMID: 39089046 DOI: 10.1016/j.plaphy.2024.108982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024]
Abstract
Phosphate (P) and nitrogen (N) fertilization affect rice tillering, indicating that P- and N-regulated tiller growth has a crucial effect on grain yield. Cytokinins and strigolactones (SLs) promote and inhibit tiller bud outgrowth, respectively; however, the underlying mechanisms are unclear. In this study, tiller bud outgrowth and cytokinin fractions were evaluated in rice plants fertilized at different levels of P and N. Low phosphate or nitrogen (LP or LN) reduced rice tiller numbers and bud elongation, in line with low cytokinin levels in tiller buds and xylem sap as well as low TCSn:GUS expression, a sensitive cytokinin signal reporter, in the stem base. Furthermore, exogenous cytokinin (6-benzylaminopurin, 6-BA) administration restored bud length and TCSn:GUS activity in LP- and LN-treated plants to similar levels as control plants. The TCSn:GUS activity and tiller bud outgrowth were less affected by LP and LN supplies in SL-synthetic and SL-signaling mutants (d17 and d53) compared to LP- and LN-treated wild-type (WT) plants, indicating that SL modulate tiller bud elongation under LP and LN supplies by reducing the cytokinin levels in tiller buds. OsCKX9 (a cytokinin catabolism gene) transcription in buds and roots was induced by LP, LN supplies and by adding the SL analog GR24. A reduced response of cytokinin fractions to LP and LN supplies was observed in tiller buds and xylem sap of the d53 mutant compared to WT plants. These results suggest that cytokinin catabolism and transport are involved in SL-modulated rice tillering fueled by P and N fertilization.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyuan Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyao Chang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daojian Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaoyao Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changxiao Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenqing Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongmei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaonan Xie
- Weed Science Center, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Japan
| | - Yali Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Yu L, Zhou J, Lin J, Chen M, Liu F, Zheng X, Zhou L, Wang R, Xiao L, Liu Y. Perception of strigolactones and the coordinated phytohormonal regulation on rice ( Oryza sativa) tillering is affected by endogenous ascorbic acid. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23148. [PMID: 38326230 DOI: 10.1071/fp23148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
Phytohormones play a key role in regulating tiller number. Ascorbic acid (Asc)-phytohormone interaction plays a pivotal role in the regulation of senescence. We analysed the relationship between Asc and the enzyme concentrations and gene transcript abundances related to the signal perception of strigolactones (SLs), the contents of four phytohormones (abscisic acid, ABA; jasmonic acid, JA; indole acetic acid, IAA; cytokinin, CTK), the enzyme concentrations and gene transcript abundances related to the synthesis or transportation of these four phytohormones. Our results showed that Asc deficiency leads to the upregulation of enzyme concentrations, gene transcript abundances related to the SL signal perception, ABA synthesis and IAA transport. The altered level of Asc also leads to a change in the contents of ABA, JA, IAA and CTK. These findings support the conclusion that Asc or Asc/DHA play an important role in the signal perception and transduction of SLs, and Asc may affect the coordinated regulation of SL, IAA and CTK on rice (Oryza sativa ) tillering.
Collapse
Affiliation(s)
- Le Yu
- College of Life Science, Zhaoqing University, Zhaoqing, Guangdong 526061, China
| | - Jiankai Zhou
- College of Life Science, Zhaoqing University, Zhaoqing, Guangdong 526061, China
| | - Junlong Lin
- College of Life Science, Zhaoqing University, Zhaoqing, Guangdong 526061, China
| | - Mengwei Chen
- College of Life Science, Zhaoqing University, Zhaoqing, Guangdong 526061, China
| | - Fang Liu
- College of Life Science, Zhaoqing University, Zhaoqing, Guangdong 526061, China
| | - Xinlin Zheng
- College of Life Science, Zhaoqing University, Zhaoqing, Guangdong 526061, China
| | - Liping Zhou
- College of Life Science, Zhaoqing University, Zhaoqing, Guangdong 526061, China
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yonghai Liu
- College of Life Science, Zhaoqing University, Zhaoqing, Guangdong 526061, China; and Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, Guangdong 526238, China
| |
Collapse
|
5
|
Wu W, Zhang TT, You LL, Wang ZY, Du SQ, Song HY, Wang ZH, Huang YJ, Liao JL. The QTL and Candidate Genes Regulating the Early Tillering Vigor Traits of Late-Season Rice in Double-Cropping Systems. Int J Mol Sci 2024; 25:1497. [PMID: 38338776 PMCID: PMC10855346 DOI: 10.3390/ijms25031497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Rice effective panicle is a major trait for grain yield and is affected by both the genetic tiller numbers and the early tillering vigor (ETV) traits to survive environmental adversities. The mechanism behind tiller bud formation has been well described, while the genes and the molecular mechanism underlying rice-regulating ETV traits are unclear. In this study, the candidate genes in regulating ETV traits have been sought by quantitative trait locus (QTL) mapping and bulk-segregation analysis by resequencing method (BSA-seq) conjoint analysis using rice backcross inbred line (BIL) populations, which were cultivated as late-season rice of double-cropping rice systems. By QTL mapping, seven QTLs were detected on chromosomes 1, 3, 4, and 9, with the logarithm of the odds (LOD) values ranging from 3.52 to 7.57 and explained 3.23% to 12.98% of the observed phenotypic variance. By BSA-seq analysis, seven QTLs on chromosomes 1, 2, 4, 5, 7, and 9 were identified using single-nucleotide polymorphism (SNP) and insertions/deletions (InDel) index algorithm and Euclidean distance (ED) algorithm. The overlapping QTL resulting from QTL mapping and BSA-seq analysis was shown in a 1.39 Mb interval on chromosome 4. In the overlap interval, six genes, including the functional unknown genes Os04g0455650, Os04g0470901, Os04g0500600, and ethylene-insensitive 3 (Os04g0456900), sialyltransferase family domain containing protein (Os04g0506800), and ATOZI1 (Os04g0497300), showed the differential expression between ETV rice lines and late tillering vigor (LTV) rice lines and have a missense base mutation in the genomic DNA sequences of the parents. We speculate that the six genes are the candidate genes regulating the ETV trait in rice, which provides a research basis for revealing the molecular mechanism behind the ETV traits in rice.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
| | - Tian-Tian Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
| | - Li-Li You
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
| | - Zi-Yi Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
| | - Si-Qi Du
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
| | - Hai-Yan Song
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zao-Hai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ying-Jin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiang-Lin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
6
|
Zhao Y, Zha M, Xu C, Hou F, Wang Y. Proteomic Analysis Revealed the Antagonistic Effect of Decapitation and Strigolactones on the Tillering Control in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 13:91. [PMID: 38202400 PMCID: PMC10780617 DOI: 10.3390/plants13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Removing the panicle encourages the growth of buds on the elongated node by getting rid of apical dominance. Strigolactones (SLs) are plant hormones that suppress tillering in rice. The present study employed panicle removal (RP) and external application of synthesized strigolactones (GR) to modulate rice bud growth at node 2. We focused on the full-heading stage to investigate proteomic changes related to bud germination (RP-Co) and suppression (GR-RP). A total of 434 represented differentially abundant proteins (DAPs) were detected, with 272 DAPs explicitly specified in the bud germination process, 106 in the bud suppression process, and 28 in both. DAPs in the germination process were most associated with protein processing in the endoplasmic reticulum and ribosome biogenesis. DAPs were most associated with metabolic pathways and glycolysis/gluconeogenesis in the bud suppression process. Sucrose content and two enzymes of sucrose degradation in buds were also determined. Comparisons of DAPs between the two reversed processes revealed that sucrose metabolism might be a key to modulating rice bud growth. Moreover, sucrose or its metabolites should be a signal downstream of the SLs signal transduction that modulates rice bud outgrowth. Contemplating the result so far, it is possible to open new vistas of research to reveal the interaction between SLs and sucrose signaling in the control of tillering in rice.
Collapse
Affiliation(s)
- Yanhui Zhao
- College of Biology Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.Z.); (M.Z.); (F.H.)
| | - Manrong Zha
- College of Biology Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.Z.); (M.Z.); (F.H.)
- Key Laboratory of Plant Resources Conservation and Utilization, College of Hunan Province, Jishou 416000, China
| | - Congshan Xu
- Anhui Science and Technology Achievement Transformation Promotion Center, Anhui Provincial Institute of Science and Technology, Hefei 230002, China;
| | - Fangxu Hou
- College of Biology Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.Z.); (M.Z.); (F.H.)
| | - Yan Wang
- College of Biology Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.Z.); (M.Z.); (F.H.)
- Key Laboratory of Plant Resources Conservation and Utilization, College of Hunan Province, Jishou 416000, China
| |
Collapse
|
7
|
Cárdenas-Aquino MDR, Camas-Reyes A, Valencia-Lozano E, López-Sánchez L, Martínez-Antonio A, Cabrera-Ponce JL. The Cytokinins BAP and 2-iP Modulate Different Molecular Mechanisms on Shoot Proliferation and Root Development in Lemongrass ( Cymbopogon citratus). PLANTS (BASEL, SWITZERLAND) 2023; 12:3637. [PMID: 37896100 PMCID: PMC10610249 DOI: 10.3390/plants12203637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The known activities of cytokinins (CKs) are promoting shoot multiplication, root growth inhibition, and delaying senescence. 6-Benzylaminopurine (BAP) has been the most effective CK to induce shoot proliferation in cereal and grasses. Previously, we reported that in lemongrass (Cymbopogon citratus) micropropagation, BAP 10 µM induces high shoot proliferation, while the natural CK 6-(γ,γ-Dimethylallylamino)purine (2-iP) 10 µM shows less pronounced effects and developed rooting. To understand the molecular mechanisms involved, we perform a protein-protein interaction (PPI) network based on the genes of Brachypodium distachyon involved in shoot proliferation/repression, cell cycle, stem cell maintenance, auxin response factors, and CK signaling to analyze the molecular mechanisms in BAP versus 2-iP plants. A different pattern of gene expression was observed between BAP- versus 2-iP-treated plants. In shoots derived from BAP, we found upregulated genes that have already been demonstrated to be involved in de novo shoot proliferation development in several plant species; CK receptors (AHK3, ARR1), stem cell maintenance (STM, REV and CLV3), cell cycle regulation (CDKA-CYCD3 complex), as well as the auxin response factor (ARF5) and CK metabolism (CKX1). In contrast, in the 2-iP culture medium, there was an upregulation of genes involved in shoot repression (BRC1, MAX3), ARR4, a type A-response regulator (RR), and auxin metabolism (SHY2).
Collapse
Affiliation(s)
- María del Rosario Cárdenas-Aquino
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - Alberto Camas-Reyes
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - Lorena López-Sánchez
- Red de Estudios Moleculares Avanzados, Unidad de Microscopia Avanzada, Instituto de Ecología, A.C. INECOL 1975–2023, Carretera antigua a Coatepec 351, Col. El Haya, Xalapa 91073, Mexico;
| | - Agustino Martínez-Antonio
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| |
Collapse
|
8
|
Marti-Jerez K, Català-Forner M, Tomàs N, Murillo G, Ortiz C, Sánchez-Torres MJ, Vitali A, Lopes MS. Agronomic performance and remote sensing assessment of organic and mineral fertilization in rice fields. FRONTIERS IN PLANT SCIENCE 2023; 14:1230012. [PMID: 37860263 PMCID: PMC10582757 DOI: 10.3389/fpls.2023.1230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Introduction Rice heavily relies on nitrogen fertilizers, posing environmental, resource, and geopolitical challenges. This study explores sustainable alternatives like animal manure and remote sensing for resource-efficient rice cultivation. It aims to assess the long-term impact of organic fertilization and remote sensing monitoring on agronomic traits, yield, and nutrition. Methods A six-year experiment in rice fields evaluated fertilization strategies, including pig slurry (PS) and chicken manure (CM) with mineral fertilizers (MIN), MIN-only, and zero-fertilization. Traits, yield, spectral responses, and nutrient content were measured. Sentinel-2 remote sensing tracked crop development. Results Cost-effective organic fertilizers (PS and CM) caused a 13% and 15% yield reduction but still doubled zero-fertilization yield. PS reduced nitrogen leaching. Heavy metals in rice grains were present at safe amounts. Organic-fertilized crops showed nitrogen deficiency at the late vegetative stages, affecting yield. Sentinel-2 detected nutrient deficiencies through NDVI. Discussion Organic fertilizers, especially PS, reduce nitrogen loss, benefiting the environment. However, they come with yield trade-offs and nutrient management challenges that can be managed and balanced with reduced additional mineral applications. Sentinel-2 remote sensing helps manage nutrient deficiencies. In summary, this research favors cost-effective organic fertilizers with improved nutrient management for sustainable rice production.
Collapse
Affiliation(s)
- Karen Marti-Jerez
- Sustainable Field Crops, Institute of Agrifood Research and Technology, Amposta, Spain
| | - Mar Català-Forner
- Sustainable Field Crops, Institute of Agrifood Research and Technology, Amposta, Spain
| | - Núria Tomàs
- Sustainable Field Crops, Institute of Agrifood Research and Technology, Amposta, Spain
| | - Gemma Murillo
- Ministry of Climate Action, Food and Rural Agenda, Lleida, Spain
| | - Carlos Ortiz
- Ministry of Climate Action, Food and Rural Agenda, Lleida, Spain
| | | | - Andrea Vitali
- Ente Nazionale Risi, Rice Research Centre, Castello d’Agogna, Italy
| | - Marta S. Lopes
- Sustainable Field Crops, Institute of Agrifood Research and Technology, Lleida, Spain
| |
Collapse
|
9
|
Dun EA, Brewer PB, Gillam EMJ, Beveridge CA. Strigolactones and Shoot Branching: What Is the Real Hormone and How Does It Work? PLANT & CELL PHYSIOLOGY 2023; 64:967-983. [PMID: 37526426 PMCID: PMC10504579 DOI: 10.1093/pcp/pcad088] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/02/2023]
Abstract
There have been substantial advances in our understanding of many aspects of strigolactone regulation of branching since the discovery of strigolactones as phytohormones. These include further insights into the network of phytohormones and other signals that regulate branching, as well as deep insights into strigolactone biosynthesis, metabolism, transport, perception and downstream signaling. In this review, we provide an update on recent advances in our understanding of how the strigolactone pathway co-ordinately and dynamically regulates bud outgrowth and pose some important outstanding questions that are yet to be resolved.
Collapse
Affiliation(s)
- Elizabeth A Dun
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Philip B Brewer
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- Waite Research Institute, School of Agriculture Food & Wine, The University of Adelaide, Adelaide, SA 5064, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Christine A Beveridge
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
10
|
Kurepa J, Smalle JA. Plant Hormone Modularity and the Survival-Reproduction Trade-Off. BIOLOGY 2023; 12:1143. [PMID: 37627027 PMCID: PMC10452219 DOI: 10.3390/biology12081143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Biological modularity refers to the organization of living systems into separate functional units that interact in different combinations to promote individual well-being and species survival. Modularity provides a framework for generating and selecting variations that can lead to adaptive evolution. While the exact mechanisms underlying the evolution of modularity are still being explored, it is believed that the pressure of conflicting demands on limited resources is a primary selection force. One prominent example of conflicting demands is the trade-off between survival and reproduction. In this review, we explore the available evidence regarding the modularity of plant hormones within the context of the survival-reproduction trade-off. Our findings reveal that the cytokinin module is dedicated to maximizing reproduction, while the remaining hormone modules function to ensure reproduction. The signaling mechanisms of these hormone modules reflect their roles in this survival-reproduction trade-off. While the cytokinin response pathway exhibits a sequence of activation events that aligns with the developmental robustness expected from a hormone focused on reproduction, the remaining hormone modules employ double-negative signaling mechanisms, which reflects the necessity to prevent the excessive allocation of resources to survival.
Collapse
Affiliation(s)
| | - Jan A. Smalle
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA;
| |
Collapse
|
11
|
Lin C, Hang T, Jiang C, Yang P, Zhou M. Effects of different phosphorus levels on tiller bud development in hydroponic Phyllostachys edulis seedlings. TREE PHYSIOLOGY 2023; 43:1416-1431. [PMID: 37099799 DOI: 10.1093/treephys/tpad055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
An appropriate amount of phosphate fertilizer can improve the germination rate of bamboo buds and increase the bamboo shoot output. However, the underlying biological mechanisms of phosphate fertilizer in bamboo shoot development have not been systematically reported. Herein, the effects of low (LP, 1 μM), normal (NP, 50 μM) and high (HP, 1000 μM) phosphorus (P) on the growth and development of moso bamboo (Phyllostachys edulis) tiller buds were first investigated. Phenotypically, the seedling biomass, average number of tiller buds and bud height growth rate under the LP and HP treatments were significantly lower than those under the NP treatment. Next, the microstructure difference of tiller buds in the late development stage (S4) at three P levels was analyzed. The number of internode cells and vascular bundles were significantly lower in the LP treatments than in the NP treatments. The relative expression levels of eight P transport genes, eight hormone-related genes and four bud development genes at the tiller bud developmental stage (S2-S4) and the tiller bud re-tillering stage were analyzed with real-time polymerase chain reaction. The results showed that the expression trends for most P transport genes, hormone-related genes and bud development genes from S2 to S4 were diversified at different P levels, and the expression levels were also different at different P levels. In the tiller bud re-tillering stage, the expression levels of seven P transport genes and six hormone-related genes showed a downward trend with increasing P level. REV expression level decreased under LP and HP conditions. TB1 expression level increased under HP condition. Therefore, we conclude that P deficiency inhibits tiller bud development and re-tillering, and that P depends on the expression of REV and TB1 genes and auxin, cytokinin and strigolactones synthesis and transporter genes to mediate tiller bud development and re-tillering.
Collapse
Affiliation(s)
- Chenjun Lin
- The State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, 311300 Zhejiang, China
| | - Tingting Hang
- The State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, 311300 Zhejiang, China
| | - Chenhao Jiang
- The State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, 311300 Zhejiang, China
| | - Ping Yang
- The State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, 311300 Zhejiang, China
| | - Mingbing Zhou
- The State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, 311300 Zhejiang, China
| |
Collapse
|
12
|
Kabange NR, Lee SM, Shin D, Lee JY, Kwon Y, Kang JW, Cha JK, Park H, Alibu S, Lee JH. Multiple Facets of Nitrogen: From Atmospheric Gas to Indispensable Agricultural Input. Life (Basel) 2022; 12:1272. [PMID: 36013451 PMCID: PMC9410007 DOI: 10.3390/life12081272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Nitrogen (N) is a gas and the fifth most abundant element naturally found in the atmosphere. N's role in agriculture and plant metabolism has been widely investigated for decades, and extensive information regarding this subject is available. However, the advent of sequencing technology and the advances in plant biotechnology, coupled with the growing interest in functional genomics-related studies and the various environmental challenges, have paved novel paths to rediscovering the fundamentals of N and its dynamics in physiological and biological processes, as well as biochemical reactions under both normal and stress conditions. This work provides a comprehensive review on multiple facets of N and N-containing compounds in plants disseminated in the literature to better appreciate N in its multiple dimensions. Here, some of the ancient but fundamental aspects of N are revived and the advances in our understanding of N in the metabolism of plants is portrayed. It is established that N is indispensable for achieving high plant productivity and fitness. However, the use of N-rich fertilizers in relatively higher amounts negatively affects the environment. Therefore, a paradigm shift is important to shape to the future use of N-rich fertilizers in crop production and their contribution to the current global greenhouse gases (GHGs) budget would help tackle current global environmental challenges toward a sustainable agriculture.
Collapse
Affiliation(s)
- Nkulu Rolly Kabange
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - So-Myeong Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Dongjin Shin
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Ji-Yoon Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Youngho Kwon
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Ju-Won Kang
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Jin-Kyung Cha
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Hyeonjin Park
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Simon Alibu
- National Crops Resources Research Institute (NaCRRI), NARO, Entebbe 7084, Uganda
| | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| |
Collapse
|