1
|
Wu X, Lin T, Zhou X, Zhang W, Liu S, Qiu H, Birch PRJ, Tian Z. Potato E3 ubiquitin ligase StRFP1 positively regulates late blight resistance by degrading sugar transporters StSWEET10c and StSWEET11. THE NEW PHYTOLOGIST 2024; 243:688-704. [PMID: 38769723 DOI: 10.1111/nph.19848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Potato (Solanum tuberosum) is the fourth largest food crop in the world. Late blight, caused by oomycete Phytophthora infestans, is the most devastating disease threatening potato production. Previous research has shown that StRFP1, a potato Arabidopsis Tóxicos en Levadura (ATL) family protein, positively regulates late blight resistance via its E3 ligase activity. However, the underlying mechanism is unknown. Here, we reveal that StRFP1 is associated with the plasma membrane (PM) and undergoes constitutive endocytic trafficking. Its PM localization is essential for inhibiting P. infestans colonization. Through in vivo and in vitro assays, we investigated that StRFP1 interacts with two sugar transporters StSWEET10c and StSWEET11 at the PM. Overexpression (OE) of StSWEET10c or StSWEET11 enhances P. infestans colonization. Both StSWEET10c and StSWEET11 exhibit sucrose transport ability in yeast, and OE of StSWEET10c leads to an increased sucrose content in the apoplastic fluid of potato leaves. StRFP1 ubiquitinates StSWEET10c and StSWEET11 to promote their degradation. We illustrate a novel mechanism by which a potato ATL protein enhances disease resistance by degrading susceptibility (S) factors, such as Sugars Will Eventually be Exported Transporters (SWEETs). This offers a potential strategy for improving disease resistance by utilizing host positive immune regulators to neutralize S factors.
Collapse
Affiliation(s)
- Xintong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Tianyu Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Xiaoshuang Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Wenjun Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Shengxuan Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Huishan Qiu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Paul R J Birch
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| |
Collapse
|
2
|
Qu D, Wu F, Guo Y, Zhang J, Li M, Yang L, Wang L, Su H. Dark septate endophyte Anteaglonium sp. T010 promotes biomass accumulation in poplar by regulating sucrose metabolism and hormones. TREE PHYSIOLOGY 2024; 44:tpae057. [PMID: 38775231 DOI: 10.1093/treephys/tpae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
Plant biomass is a highly promising renewable feedstock for the production of biofuels, chemicals and materials. Enhancing the content of plant biomass through endophyte symbiosis can effectively reduce economic and technological barriers in industrial production. In this study, we found that symbiosis with the dark septate endophyte (DSE) Anteaglonium sp. T010 significantly promoted the growth of poplar trees and increased plant biomass, including cellulose, lignin and starch. To further investigate whether plant biomass was related to sucrose metabolism, we analyzed the levels of relevant sugars and enzyme activities. During the symbiosis of Anteaglonium sp. T010, sucrose, fructose and glucose levels in the stem of poplar decreased, while the content of intermediates such as glucose-6-phosphate (G6P), fructose-6-phosphate (F6P) and UDP-glucose (UDPG), and the activity of enzymes related to sucrose metabolism, including sucrose synthase (SUSY), cell wall invertase (CWINV), fructokinase (FRK) and hexokinase, increased. In addition, the contents of glucose, fructose, starch, and their intermediates G6P, F6P and UDPG, as well as the enzyme activities of SUSY, CWINV, neutral invertase and FRK in roots were increased, which ultimately led to the increase of root biomass. Besides that, during the symbiotic process of Anteaglonium sp. T010, there were significant changes in the expression levels of root-related hormones, which may promote changes in sucrose metabolism and consequently increase the plant biomass. Therefore, this study suggested that DSE fungi can increase the plant biomass synthesis capacity by regulating the carbohydrate allocation and sink strength in poplar.
Collapse
Affiliation(s)
- Dehui Qu
- School of Agriculture, Ludong University, Hongqi Road, Zhifu District, Yantai 264025, China
| | - Fanlin Wu
- School of Agriculture, Ludong University, Hongqi Road, Zhifu District, Yantai 264025, China
| | - Yingtian Guo
- College of Agriculture and Forestry Sciences, Linyi University, Shuangling Road, Lanshan District, Linyi 276000, China
| | - Jin Zhang
- School of Agriculture, Ludong University, Hongqi Road, Zhifu District, Yantai 264025, China
| | - Mengyuan Li
- College of Life Sciences, Ludong University, Hongqi Road, Zhifu District, Yantai 264025, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Ningxia Road, Laoshan District, Qingdao 266071, China
| | - Lei Wang
- College of Life Sciences, Ludong University, Hongqi Road, Zhifu District, Yantai 264025, China
| | - Hongyan Su
- College of Agriculture and Forestry Sciences, Linyi University, Shuangling Road, Lanshan District, Linyi 276000, China
| |
Collapse
|
3
|
Hu L, Tian J, Zhang F, Song S, Cheng B, Liu G, Liu H, Zhao X, Wang Y, He H. Functional Characterization of CsSWEET5a, a Cucumber Hexose Transporter That Mediates the Hexose Supply for Pollen Development and Rescues Male Fertility in Arabidopsis. Int J Mol Sci 2024; 25:1332. [PMID: 38279332 PMCID: PMC10816302 DOI: 10.3390/ijms25021332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Pollen cells require large amounts of sugars from the anther to support their development, which is critical for plant sexual reproduction and crop yield. Sugars Will Eventually be Exported Transporters (SWEETs) have been shown to play an important role in the apoplasmic unloading of sugars from anther tissues into symplasmically isolated developing pollen cells and thereby affect the sugar supply for pollen development. However, among the 17 CsSWEET genes identified in the cucumber (Cucumis sativus L.) genome, the CsSWEET gene involved in this process has not been identified. Here, a member of the SWEET gene family, CsSWEET5a, was identified and characterized. The quantitative real-time PCR and β-glucuronidase expression analysis revealed that CsSWEET5a is highly expressed in the anthers and pollen cells of male cucumber flowers from the microsporocyte stage (stage 9) to the mature pollen stage (stage 12). Its subcellular localization indicated that the CsSWEET5a protein is localized to the plasma membrane. The heterologous expression assays in yeast demonstrated that CsSWEET5a encodes a hexose transporter that can complement both glucose and fructose transport deficiencies. CsSWEET5a can significantly rescue the pollen viability and fertility of atsweet8 mutant Arabidopsis plants. The possible role of CsSWEET5a in supplying hexose to developing pollen cells via the apoplast is also discussed.
Collapse
Affiliation(s)
- Liping Hu
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Jiaxing Tian
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (F.Z.)
| | - Feng Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (F.Z.)
| | - Shuhui Song
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Bing Cheng
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Guangmin Liu
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Huan Liu
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Xuezhi Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Yaqin Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Hongju He
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| |
Collapse
|
4
|
Fuhrmeister R, Streubel J. Functional Analysis of Plant Monosaccharide Transporters Using a Simple Growth Complementation Assay in Yeast. Bio Protoc 2023; 13:e4733. [PMID: 37575400 PMCID: PMC10415198 DOI: 10.21769/bioprotoc.4733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 05/10/2023] [Indexed: 08/15/2023] Open
Abstract
The study of genes and their products is an essential prerequisite for fundamental research. Characterization can be achieved by analyzing mutants or overexpression lines or by studying the localization and substrate specificities of the resulting proteins. However, functional analysis of specific proteins in complex eukaryotic organisms can be challenging. To overcome this, the use of heterologous systems to express genes and analyze the resulting proteins can save time and effort. Yeast is a preferred heterologous model organism: it is easy to transform, and tools for genomics, engineering, and metabolomics are already available. Here, we describe a well-established and simple method to analyze the activity of plant monosaccharide transporters in the baker's yeast, Saccharomyces cerevisiae, using a simple growth complementation assay. We used the famous hexose-transport-deficient yeast strain EBY.VW4000 to express candidate plant monosaccharide transporters and analyzed their transport activity. This assay does not require any radioactive labeling of substrates and can be easily extended for quantitative analysis using growth curves or by analyzing the transport rates of fluorescent substrates like the glucose analog 2-NBDG. Finally, to further simplify the cloning of potential candidate transporters, we provide level 0 modular cloning (MoClo) modules for efficient and simple Golden Gate cloning. This approach provides a convenient tool for the functional analysis of plant monosaccharide transporters in yeast. Key features Comprehensive, simple protocol for analysis of plant monosaccharide transporters in yeast Includes optional MoClo parts for cloning with Golden Gate method Includes protocol for the production and transformation of competent yeast cells Does not require hazardous solutions, radiolabeled substrates, or specialized equipment.
Collapse
Affiliation(s)
- Robert Fuhrmeister
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | - Jana Streubel
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
5
|
Filyushin MA, Anisimova OK, Shchennikova AV, Kochieva EZ. Genome-Wide Identification, Expression, and Response to Fusarium Infection of the SWEET Gene Family in Garlic ( Allium sativum L.). Int J Mol Sci 2023; 24:ijms24087533. [PMID: 37108694 PMCID: PMC10138969 DOI: 10.3390/ijms24087533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Proteins of the SWEET (Sugar Will Eventually be Exported Transporters) family play an important role in plant development, adaptation, and stress response by functioning as transmembrane uniporters of soluble sugars. However, the information on the SWEET family in the plants of the Allium genus, which includes many crop species, is lacking. In this study, we performed a genome-wide analysis of garlic (Allium sativum L.) and identified 27 genes putatively encoding clade I-IV SWEET proteins. The promoters of the A. sativum (As) SWEET genes contained hormone- and stress-sensitive elements associated with plant response to phytopathogens. AsSWEET genes had distinct expression patterns in garlic organs. The expression levels and dynamics of clade III AsSWEET3, AsSWEET9, and AsSWEET11 genes significantly differed between Fusarium-resistant and -susceptible garlic cultivars subjected to F. proliferatum infection, suggesting the role of these genes in the garlic defense against the pathogen. Our results provide insights into the role of SWEET sugar uniporters in A. sativum and may be useful for breeding Fusarium-resistant Allium cultivars.
Collapse
Affiliation(s)
- Mikhail A Filyushin
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Olga K Anisimova
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Anna V Shchennikova
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Elena Z Kochieva
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
6
|
Vañó MS, Nourimand M, MacLean A, Pérez-López E. Getting to the root of a club - Understanding developmental manipulation by the clubroot pathogen. Semin Cell Dev Biol 2023; 148-149:22-32. [PMID: 36792438 DOI: 10.1016/j.semcdb.2023.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Plasmodiophora brassicae Wor., the clubroot pathogen, is the perfect example of an "atypical" plant pathogen. This soil-borne protist and obligate biotrophic parasite infects the roots of cruciferous crops, inducing galls or clubs that lead to wilting, loss of productivity, and plant death. Unlike many other agriculturally relevant pathosystems, research into the molecular mechanisms that underlie clubroot disease and Plasmodiophora-host interactions is limited. After release of the first P. brassicae genome sequence and subsequent availability of transcriptomic data, the clubroot research community have implicated the involvement of phytohormones during the clubroot pathogen's manipulation of host development. Herein we review the main events leading to the formation of root galls and describe how modulation of select phytohormones may be key to modulating development of the plant host to the benefit of the pathogen. Effector-host interactions are at the base of different strategies employed by pathogens to hijack plant cellular processes. This is how we suspect the clubroot pathogen hijacks host plant metabolism and development to induce nutrient-sink roots galls, emphasizing a need to deepen our understanding of this master manipulator.
Collapse
Affiliation(s)
- Marina Silvestre Vañó
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada; Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada; Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Maryam Nourimand
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Allyson MacLean
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Edel Pérez-López
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada; Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada; Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
7
|
Salmeron-Santiago IA, Martínez-Trujillo M, Valdez-Alarcón JJ, Pedraza-Santos ME, Santoyo G, López PA, Larsen J, Pozo MJ, Chávez-Bárcenas AT. Carbohydrate and lipid balances in the positive plant phenotypic response to arbuscular mycorrhiza: increase in sink strength. PHYSIOLOGIA PLANTARUM 2023; 175:e13857. [PMID: 36648218 DOI: 10.1111/ppl.13857] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The exchange of phosphorus (P) and carbon (C) between plants and arbuscular mycorrhizal fungi (AMF) is a major determinant of their mutualistic symbiosis. We explored the C dynamics in tomato (Solanum lycorpersicum) inoculated or not with Rhizophagus irregularis to study their growth response under different NaH2 PO4 concentrations (Null P, 0 mM; Low P, 0.065 mM; High P, 1.3 mM). The percentage of AMF colonization was similar in plants under Null and Low P, but severely reduced under High P. However, the AMF mass biomarker 16:1ω5 revealed higher fungal accumulation in inoculated roots under Low P, while more AMF spores were produced in the Null P. Under High P, AMF biomass and spores were strongly reduced. Plant growth response to mycorrhiza was negative under Null P, showing reduction in height, biovolume index, and source leaf (SL) area. Under Low P, inoculated plants showed a positive response (e.g., increased SL area), while inoculated plants under High P were similar to non-inoculated plants. AMF promoted the accumulation of soluble sugars in the SL under all fertilization levels, whereas the soluble sugar level decreased in roots under Low P in inoculated plants. Transcriptional upregulation of SlLIN6 and SlSUS1, genes related to carbohydrate metabolism, was observed in inoculated roots under Null P and Low P, respectively. We conclude that P-limiting conditions that increase AMF colonization stimulate plant growth due to an increase in the source and sink strength. Our results suggest that C partitioning and allocation to different catabolic pathways in the host are influenced by AMF performance.
Collapse
Affiliation(s)
| | | | - Juan J Valdez-Alarcón
- Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Martha E Pedraza-Santos
- Facultad de Agrobiología "Presidente Juárez", Universidad Michoacana de San Nicolás de Hidalgo, Uruapan, Mexico
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Pedro A López
- Colegio de Postgraduados-Campus Puebla, San Pedro Cholula, Mexico
| | - John Larsen
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - María J Pozo
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Granada, Spain
| | - Ana T Chávez-Bárcenas
- Facultad de Agrobiología "Presidente Juárez", Universidad Michoacana de San Nicolás de Hidalgo, Uruapan, Mexico
| |
Collapse
|
8
|
Song M, Zhang X, Yang J, Gao C, Wei Y, Chen S, Liesche J. Arabidopsis plants engineered for high root sugar secretion enhance the diversity of soil microorganisms. Biotechnol J 2022; 17:e2100638. [PMID: 35894173 DOI: 10.1002/biot.202100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/06/2022]
Abstract
Plants secrete sugars from their roots into the soil, presumably to support beneficial plant-microbe interactions. Accordingly, manipulation of sugar secretion might be a viable strategy to enhance plant health and productivity. To evaluate the effect of increased root sugar secretion on plant performance and the soil microbiome, we overexpressed glucose and sucrose-specific membrane transporters in root epidermal cells of the model plant Arabidopsis thaliana. These plants showed strongly increased rates of sugar secretion in a hydroponic culture system. When grown on soil, the transporter-overexpressor plants displayed a higher photosynthesis rate, but reduced shoot growth compared to the wild-type control. Amplicon sequencing and qPCR analysis of rhizosphere soil samples indicated a limited effect on the total abundance of bacteria and fungi, but a strong effect on community structure in soil samples associated with the overexpressors. Notable changes included the increased abundance of bacteria belonging to the genus Rhodanobacter and the fungi belonging to the genus Cutaneotrichosporon, while Candida species abundance was reduced. The potential influences of the altered soil microbiome on plant health and productivity are discussed. The results indicate that the engineering of sugar secretion can be a viable pathway to enhancing the carbon sequestration rate and optimizing the soil microbiome. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Min Song
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.,Biomass Energy Center for Arid and Semiarid Lands, Northwest A&F University, Yangling, 712100, China.,State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Xingjian Zhang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.,Biomass Energy Center for Arid and Semiarid Lands, Northwest A&F University, Yangling, 712100, China.,State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Jintao Yang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.,Biomass Energy Center for Arid and Semiarid Lands, Northwest A&F University, Yangling, 712100, China.,State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Chen Gao
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Yahong Wei
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.,Biomass Energy Center for Arid and Semiarid Lands, Northwest A&F University, Yangling, 712100, China
| | - Shaolin Chen
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.,Biomass Energy Center for Arid and Semiarid Lands, Northwest A&F University, Yangling, 712100, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.,Biomass Energy Center for Arid and Semiarid Lands, Northwest A&F University, Yangling, 712100, China.,State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|